
 commit
root

Building and Maintaining Binary DistributionsBuilding and Maintaining Binary Distributions
with the Yocto Projectwith the Yocto Project

Michael OpdenackerMichael Opdenacker
https://rootcommit.comhttps://rootcommit.com

Embedded Linux ConferenceEmbedded Linux Conference
Vienna, Sep. 2024Vienna, Sep. 2024

https://rootcommit.com/

 commit
root

Michael Opdenacker
● Embedded Linux engineer, trainer and consultant

● STMicroelectronics, Texas Instruments, Bootlin
(founder) and now Root Commit (founder).

● Contributor to OpenEmbedded / Yocto, Linux
kernel, Elixir Cross Referencer...

● Passionate about learning and sharing knowledge

● Never missed any ELC Europe

● Except yesterday morning 🤨🌊

 commit
root

About Root Commit
● First announced in this room, a few seconds ago 😁
● Mostly ready: preliminary website, LWN.net subscription...
● Goals:

– Contribute to Free and Open Source projects, do technical research
and share experience through technical articles and presentations
at ELC.

– Offer embedded Linux training sessions with innovative teaching
techniques, to help you commit to remembering what you learn.

– Offer embedded Linux consulting services.
● https://rootcommit.com

https://rootcommit.com/

 commit
root

My involvement in OE / Yocto
● Got started with OpenEmbedded in 2004 with the earliest contributors:

Mickey Lauer, Philip Blundell, Koen Kooi...

● Between 2006, got busy with some other projects.
Buildroot and manual building were good enough.

● Served for 3 years as documentation maintainer for the Yocto Project.

● The Yocto Project got funding from the Sovereign Tech Fund for
improving binary distribution support.

● Disclaimer: I do not represent the Yocto Project, which decisions are
made by its members through its Technical Steering Committee. I’m just
a contributor!

 commit
root

Goals of this presentation
● Share what I learned about binary distros
● Cover recently added features and possible future

developments.

 commit
root

What I learned

 commit
root

Binary distros vs custom root filesystems

Binary distros

● Meant to be updated through packages.

● Updates are as small as they can be and one
root partition is enough.

● Enable to remove packages

● Enable to add packages thanks to package
feeds

● Need to support configuration at run time

● Can be updated without rebooting in most
cases.

Custom root filesystems

● Meant to be updated through an entirely
new image.

● This consumes more bandwidth and is
less space efficient (need A/B partitions)

● Don’t enable to remove or add
applications

● Typically customized by the build system
at generation time.

● Cannot be updated without rebooting

 commit
root

Where each shines
Binary distros

● General purpose desktop,
server and cloud distros
(Debian, Fedora, Ubuntu…),
meant to be configured at run
time.

● Some embedded devices where
the root system is updated
separately from applications
(e.g. some carmakers).

Custom root filesystems

● Dedicated embedded systems,
in which you want no unused
components, and which are not
meant to be configured at run
time.

● Systems which have to go
through full validation at each
update.

 commit
root

OE and Yocto binary distros (1)
● OpenEmbedded was created to generate the OpenZaurus

distro for Sharp Zaurus devices.
● Ångström Distribution generated by OpenEmbedded

supporting many devices. Maintained by Koen Kooi.

Ångström was great to quickly boot a new device and deploy
demos and add extra packages without needing to run the
build system.

Just boot a custom built Linux kernel and boot it with an
Ångström root filesystem.

● Leider ist Ångström mit dem 71er gefahren (wie man sagt in
Wien)

● Ångström is defunct since 2015 🪦

 commit
root

OE and Yocto binary distros (2)
● Poky is used as a reference distribution for the Yocto

Project to test OpenEmbedded builds.

However, generated images didn’t have a package
management system.

● Yoe Distro
An attempt to have a new Yocto generated binary
distribution, maintained / started by Khem Raj.
https://www.yoedistro.org/

However, doesn’t ship binary images and packages yet.

https://www.yoedistro.org/

 commit
root

Standard distros vs Yocto built ones
Standard distros

● Pre-compiled

● Limited ability to customize

● But faster security updates

● Commercial support available

Yocto built ones

● Need to build them from source

● Completely customizable

● But slower security updates (thanks to
community contributions and member
funding).

● Commercial support available too (e.g. Wind
River)

● The Yocto project doesn’t ship binary feeds
yet.

 commit
root

OpenEmbedded Binary Package Generation

 commit
root

Advantages using binary packages
● OK, binary packages can be used to add applications to a root

filesystem

● But they can also be used to remove an application or a set of
files.

● Buildroot, not using packages, cannot do that and has to rebuild
from scratch when something has to be removed.

 commit
root

Available package formats
Rpm

● Users: Fedora, Red Hat,
Poky (by default)

● Low level tool: rpm

● Front-end: yum

● Test:
1.3 GB of packages
45 MB .tar.bz2 image

Deb

● Users: Ubuntu, Debian,
Poky (non-default)

● Low-level tool: dpkg

● Front-end: apt

● Test:
1.1 GB of packages
27 MB .tar.bz2 image

Ipk
● Users: OpenWRT, Poky

(non-default)
● Simplified version of

Deb
Maintained by the Yocto
Project

● Only one tool: opkg
● Test:

1.8 GB of packages
19 MB .tar.bz2 image

Test: core-image-minimal, poky master (Sep. 11, 2024),
with package management

 commit
root

Why are ipk packages bigger than deb ones?
> find . -name "btrfs-tools[-_]6*" -exec du -sh {} ';'

808K ./deb/core2-64/btrfs-tools_6.10.1-r0_amd64.deb
884K ./rpm/core2_64/btrfs-tools-6.10.1-r0.core2_64.rpm
1,1M ./ipk/core2-64/btrfs-tools_6.10.1-r0_core2-64.ipk

Let’s extract the contents of the .deb and .ipk files with ar -x, to deb/ and ipk/ directories:

> tree --du --charset=ascii deb ipk
[829304] deb
|-- [780] control.tar.xz
|-- [824424] data.tar.xz
`-- [4] debian-binary
[1118594] ipk
|-- [710] control.tar.gz
|-- [1113784] data.tar.zst
`-- [4] debian-binary

💡
ipk package contents are compressed
with zstd, not as powerful as xz, but
much less CPU intensive.

That’s better for embedded systems.

 commit
root

Choosing the package format
● Set PACKAGE_CLASSES in conf/local.conf

PACKAGE_CLASSES ?= "package_deb"
PACKAGE_CLASSES ?= "package_deb package_ipk package_rpm"

● Though packages are generated for all PACKAGE_CLASSES, only the
first setting is actually used to generate the image.

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_CLASSES
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_CLASSES

 commit
root

Enabling package management
● Though OpenEmbedded uses packages to install applications and other

files, by default there is no package manager on Poky’s core-image-
minimal image.

● If you want to be able to use package management at run time:

– Add to conf/local.conf:

EXTRA_IMAGE_FEATURES += "package-management"

– Or to an image recipe:

IMAGE_FEATURES += "package-management"

● See EXTRA_IMAGE_FEATURES and IMAGE_FEATURES.

https://docs.yoctoproject.org/ref-manual/variables.html#term-EXTRA_IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES

 commit
root

Create a package feed
● Package feeds are created automatically in
tmp/deploy/[rpm|deb|ipk] when you build an image.

● ⚠️ Achtung: the package indexes (catalogs of packages and
versions) are not created by default. You need to create them
with:

> bitbake package-index

 commit
root

Publish a package feed
● Your package feed contents are in

tmp/deploy/<format>

● You may copy that to a directory shared by a web server

● For development and testing, the quickest way is to run a local server
from the command line. No need to set up an Apache server! 😏

> cd tmp/deploy/ipk/
> python3 -m http.server

This starts an HTTP server on local TCP port 8000

 commit
root

Use a package feed
● You need to configure the package manager in the image to let it

know the HTTP(S) server details.

● Set the PACKAGE_FEED_URIS, PACKAGE_FEED_BASE_PATHS,
and PACKAGE_FEED_ARCHS variables in conf/local.conf

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_FEED_URIS
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_FEED_BASE_PATHS
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_FEED_ARCHS

 commit
root

Use a package feed - Example
PACKAGE_FEED_URIS = "https://example.com/packagerepos/release \
 https://example.com/packagerepos/updates"
PACKAGE_FEED_BASE_PATHS = "rpm rpm-dev"
PACKAGE_FEED_ARCHS = "all core2-64"

Given these settings, the resulting package feeds are as follows:

https://example.com/packagerepos/release/rpm/all
https://example.com/packagerepos/release/rpm/core2-64
https://example.com/packagerepos/release/rpm-dev/all
https://example.com/packagerepos/release/rpm-dev/core2-64
https://example.com/packagerepos/updates/rpm/all
https://example.com/packagerepos/updates/rpm/core2-64
https://example.com/packagerepos/updates/rpm-dev/all
https://example.com/packagerepos/updates/rpm-dev/core2-64

https://example.com/packagerepos/updates
https://example.com/packagerepos/release/rpm/all
https://example.com/packagerepos/release/rpm/core2-64
https://example.com/packagerepos/release/rpm-dev/all
https://example.com/packagerepos/release/rpm-dev/core2-64
https://example.com/packagerepos/updates/rpm/all
https://example.com/packagerepos/updates/rpm/core2-64
https://example.com/packagerepos/updates/rpm-dev/all

 commit
root

Image and package feed contents
● What goes into the image?

– The list of packages defined by IMAGE_INSTALL and the image that you
build:

> bitbake core-image-minimal

● What goes into the package feed?
– The list of packages that you build:

> bitbake hello
> bitbake world
> ...

 commit
root

Package managers: quick reference
Rpm

● Configuration:
/etc/yum.repos.d/

● Commands:
dnf update
dnf install
dnf remove
dnf upgrade

Deb

● Configuration:
/etc/opkg

● Commands:
apt update
apt list --upgradable
apt upgrade

Ipk

● Configuration:
/etc/opkg

● Commands:
opkg update
opkg install <package>
opkg remove <package>
opkg upgrade –noaction
opkg upgrade

 commit
root

PR value
● PR = Package Revision

● Only needed when applying package updates

● Example:

– Currently installed package: myapp-1.0-r0

– Available bugfix update: myapp-1.0-r1

● This makes sure that the update prevails and gets installed.
Not necessary when there is a version number increase.

https://docs.yoctoproject.org/ref-manual/variables.html#term-PR

1.0-r0
PV-rPR

https://docs.yoctoproject.org/ref-manual/variables.html#term-PR

 commit
root

PR Server
● A PR server is a process which increases the PR (revision)

value when a new package output hash is found.
● Therefore, also needs a Hash Equivalence Server to work

properly.
● Can either be a local server:
PRSERV_HOST = "localhost:0"

● Or a server shared by multiple builders:
PRSERV_HOST = "192.168.1.17:8585"

https://docs.yoctoproject.org/dev-manual/packages.html#working-with-a-pr-service

https://docs.yoctoproject.org/dev-manual/packages.html#working-with-a-pr-service

 commit
root

Newly added features

 commit
root

Building from source

Default settings, image, and distro…………………….

Create layer(s), add recipes……………………......……….

Create, customize BSP layer…………………….…………………..

Customize distro and image……………………………………………….

Debug system and application…………………………………………………...

Maintain product ……………….………………………………………………...

Quite steep to climb!

 commit
root

Using a Yocto binary distribution

Use a ready-made image for your architecture…...
Add ready-made packages to the image………….…………….

Tweak packages, build new applications, using eSDK (devtool)…….………………..

Full system optimization, building from source……………………….…………………………………...

Easier to get started!

Maintain product ………………………………………...….…………………………………………………...

 commit
root

Improvements to the PR server
● Overhaul of the PR server Python code (bitbake/lib/prserv),

aligning with Hash Equivalence server
(bitbake/lib/hashserv)… Merged in Scarthgap.

● Implement new read-only mode
Useful for an upstream distro to share PR information publicly,
without having to implement authentication.

● Implement support for an upstream PR server.

● Features available in Styhead (5.1)

 commit
root

Usefulness of upstream PR server

Upstream
feed

Local
feed libation-2.0-r1.0

Local
image myapp-1.0-r0

myapp-1.0-r1

libation-2.0-r1

libation-2.0-r1

libre 1.0-r0

libre 1.0-r1

libido 1.0-r0.0

libido 1.0-r0.1

Libido 1.0.r0

Revisions
enable local
customizations
of upstream
packages

 commit
root

Usefulness of upstream PR server

Upstream
feed

Local
feed libation-2.0-r1.0

Local
image myapp-1.0-r0

myapp-1.0-r1

libation-2.0-r1

libation-2.0-r1

libre 1.0-r0

libre 1.0-r1

libido 1.0-r0.0

libido 1.0-1.0

Libido 1.0.r1

Local has
to be updated
to keep winning

Upstream
has
changed!

 commit
root

Usefulness of upstream PR server

Upstream
feed

Local
feed libation-2.0-r1.0

Local
image myapp-1.0-r0

myapp-1.0-r1

libation-2.0-r1

libation-2.0-r1

libre 1.0-r0

libre 1.0-r1

libido 1.0-r0.0

libido 1.0-1.1

Libido 1.0.r1

One more
local change

 commit
root

Understand revision increasing logic
● Comparing versions is more complex than just string comparison

(e.g. 1.20 > 1.3)

● Read the BitBake selftests in bitbake/lib/prserv/tests.py to understand
the expected logic.

● Designed to make local always prevail over upstream.

● An additional feature available in the code, but no used yet:
– History mode: allow to decrease a PR number if the local output hash has

previously been used.

– No history mode: never decrease a PR number (default setting)

https://git.yoctoproject.org/poky/tree/bitbake/lib/prserv/tests.py

 commit
root

Nested upstream PR servers!

Hello PV.r0hello PV.r0

Upstream 0

Hello PV.r0hello PV.r0.0

Upstream 1

Hello PV.r0hello PV.r0.0.0

Upstream 2

Hello PV.r0hello PV.r0.0.0.0

Upstream 3

Hello PV.r0hello PV.r0.0.0.0

Hello PV.r0hello PV.r0.0.0.0

Upstream 4

Hello PV.r0hello PV.r0.0.0.0.0Hello PV.r0hello PV.r0.0.0.0

Upstream 5

Hello PV.r0hello PV.r0.0.0.0.0.0

Oops, forgot
to forbid infinite loops! 😱

⛔

 commit
root

How to use an upstream server
● Start the local server from the command line:

> bitbake-prserv [-h] [-f FILE] [-l LOG] [--
loglevel LOGLEVEL] [--start] [--stop] [--host HOST]
[--port PORT] [-r] [-u UPSTREAM]

● Use the PRSERV_UPSTREAM variable (conf/local.conf)

PRSERV_HOST = "localhost:0"
PRSERV_UPSTREAM = “192.168.1.17:8585”

 commit
root

Testing package feed updates
● Oe-selftest implemented to enable the autobuilder to test

upgrading an image from a previous release to the current
version using a package feed.

● Implementation submitted here:
https://lore.kernel.org/openembedded-core/202404291522
21.3405405-1-michael.opdenacker@bootlin.com/T/#u

● Still need to separate the Poky specific parts to get the test
merged in OE-core.

https://lore.kernel.org/openembedded-core/20240429152221.3405405-1-michael.opdenacker@bootlin.com/T/#u
https://lore.kernel.org/openembedded-core/20240429152221.3405405-1-michael.opdenacker@bootlin.com/T/#u

 commit
root

Preparing for future development
● Defined the scope of a binary distro prototype

(which recipes and machines to target):
https://wiki.yoctoproject.org/wiki/Binary_Distro_Prototype
#Scope_of_a_Yocto_Binary_Distribution_Prototype

● Richard Purdie and the TSC proposed policies /
requirements on how a binary reference distro for the
project would behave, and for including new recipes and
for covering new platforms or architectures:
https://wiki.yoctoproject.org/wiki/Binary_Distro_Prototype
#Policies_and_Processes

https://wiki.yoctoproject.org/wiki/Binary_Distro_Prototype#Scope_of_a_Yocto_Binary_Distribution_Prototype
https://wiki.yoctoproject.org/wiki/Binary_Distro_Prototype#Scope_of_a_Yocto_Binary_Distribution_Prototype
https://wiki.yoctoproject.org/wiki/Binary_Distro_Prototype#Policies_and_Processes
https://wiki.yoctoproject.org/wiki/Binary_Distro_Prototype#Policies_and_Processes

 commit
root

A missing feature!
● Ability to update the system SPDX description after installing

extra packages or package updates.

● The current way SPDX is generated doesn't allow to
generate -spdx packages, which would have made this
possible.

● See this discussion:
https://lists.openembedded.org/g/openembedded-architectur
e/message/1855

https://lists.openembedded.org/g/openembedded-architecture/message/1855
https://lists.openembedded.org/g/openembedded-architecture/message/1855

 commit
root

What to remember
● OpenEmbeded / Yocto has always been able to generate binary

distributions, like Ångström ()🪦
● Thanks to funding from Sovereign Tech Fund, Yocto Project has

made progress to being ready to release its own autobuilt
binary images and corresponding package feeds.

● This will make it easier to get started with Yocto without having
to compile from source.

● However, for this to happen, more funding (typically from project
members) will be necessary.

 commit
root

Key features
● Choose a package format:
PACKAGE_CLASSES ?=
"package_deb"

● Add package management to
your image:
EXTRA_IMAGE_FEATURES
+= "package-
management"

● Generate package feed index:
bitbake package-index

● Enable a PR server:
PRSERV_HOST =
"localhost:0"

● Add an upstream server:
PRSERV_UPSTREAM =
“192.168.1.17:8585”

● Start a custom PR server:
bitbake-prserv <opts>

 commit
root

Useful resources
● Yocto Project Wiki:

https://wiki.yoctoproject.org/wiki/Binary_Distro_Prototype

● Yocto Project Manual
https://docs.yoctoproject.org/dev-manual/packages.html#workin
g-with-a-pr-service
(doesn’t include the latest features yet)

https://wiki.yoctoproject.org/wiki/Binary_Distro_Prototype
https://docs.yoctoproject.org/dev-manual/packages.html#working-with-a-pr-service
https://docs.yoctoproject.org/dev-manual/packages.html#working-with-a-pr-service

 commit
root

Image credits
● Front page

https://commons.wikimedia.org/wiki/File:Schoenbrunn_philharmoniker_2012.jpg

● OE and Yocto binary distros (1)
https://en.wikipedia.org/wiki/OpenZaurus
https://en.wikipedia.org/wiki/%C3%85ngstr%C3%B6m_distribution

● OE and Yocto binary distros (2)
https://daddytypes.com/2008/01/02/poky_the_adorable_linux_mobile_build_platform_m
ascot.php
https://raw.githubusercontent.com/YoeDistro/yoe-distro/master/docs/yoe-logo.png

● OpenEmbedded Binary Package Generation
https://docs.yoctoproject.org/overview-manual/yp-intro.html#the-openembedded-build-s
ystem-workflow

● Building from source
https://openclipart.org/detail/274343/table-mountain

https://commons.wikimedia.org/wiki/File:Schoenbrunn_philharmoniker_2012.jpg
https://en.wikipedia.org/wiki/OpenZaurus
https://en.wikipedia.org/wiki/%C3%85ngstr%C3%B6m_distribution
https://daddytypes.com/2008/01/02/poky_the_adorable_linux_mobile_build_platform_mascot.php
https://daddytypes.com/2008/01/02/poky_the_adorable_linux_mobile_build_platform_mascot.php
https://raw.githubusercontent.com/YoeDistro/yoe-distro/master/docs/yoe-logo.png
https://docs.yoctoproject.org/overview-manual/yp-intro.html#the-openembedded-build-system-workflow
https://docs.yoctoproject.org/overview-manual/yp-intro.html#the-openembedded-build-system-workflow
https://openclipart.org/detail/274343/table-mountain

 commit
root

Thanks!
● Thanks for attending!

● Thanks to Richard Purdie and Bruce Ashfield
for their support during the project.

● Any questions or comments?
mo@rootcommit.com

● Please test and contribute improvements!

● Slides available: Creative BY-SA v4
https://gitlab.com/rootcommit/yocto-binary-distro

https://gitlab.com/rootcommit/yocto-binary-distro

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

