
Securing Yocto Built Systems
ELCE 2025

Michael Opdenacker

Root Commit

Aug. 26, 2025

commit
root

© 2024-2025 Root Commit. Licensed under CC BY-SA 4.0.

Michael Opdenacker Securing Yocto Built Systems 1/ 54

Michael Opdenacker commit
root

Embedded Linux expert and trainer

https://rootcommit.com/about/michael-opdenacker/

Former founder of Bootlin
New founder of Root Commit
Contributor to the Yocto Project and other Free Software
projects
Never missed a single ELC Europe since 2007!
Free Software enthusiast and advocate
(member of April.org)

Michael Opdenacker Securing Yocto Built Systems 2/ 54

https://rootcommit.com/about/michael-opdenacker/
https://bootlin.com
https://rootcommit.com

What I Do For a Living — What’s Funding This Work commit
root

Consulting and engineering work
Yocto Project
Project reviews, system
implementation, new features
Linux Kernel
Driver development, board bring-up,
debugging
Embedded Linux
Boot time, bug fixing, security and
other optimizations

Training — https://rootcommit.com/training

Yocto Project and OpenEmbedded — Free Materials!
Linux kernel, board support, driver development
Free Materials after next course!
Embedded Linux
Linux Boot Time Reduction

What’s special: focus on practical activities, interactivity and
learning techniques.

Michael Opdenacker Securing Yocto Built Systems 3/ 54

https://rootcommit.com/training

Securing Yocto Built Systems commit
root

Introduction

Michael Opdenacker Securing Yocto Built Systems 4/ 54

Goals of This Presentation? commit
root

Yocto’s Manual ”Making Images More Secure”
is too short and highlevel:
https://docs.yoctoproject.org/dev-manual/
securing-images.html
Find opportunities to improve it.

One of my customer projects has a ”Security Audit” task

Want to share what I’m learning!

Trying to focus on Yocto specific techniques

Michael Opdenacker Securing Yocto Built Systems 5/ 54

https://docs.yoctoproject.org/dev-manual/securing-images.html
https://docs.yoctoproject.org/dev-manual/securing-images.html

Not Covered in This Presentation commit
root

Linux security is a very wide topic.
Some aspects require dedicated presentations and can be SoC specific

Firewalls

Block device / filesystem
encryption

Extended file attributes

Linux Security Modules
(SELinux, AppArmor,
SMACK, Tomoyo)

Software updates

Secure boot

Verified boot

Using TPM devices

Integrity measurement

Michael Opdenacker Securing Yocto Built Systems 6/ 54

Securing Yocto Built Systems commit
root

Getting Started

Michael Opdenacker Securing Yocto Built Systems 7/ 54

Use a Long Term Support Yocto Release commit
root

Critical to get bug fixes and security updates from the project and community
Also guarantees the availability of third party layers
Exception: in development phase when the next LTS release is close,
could use the latest stable release in the meantime.

Langdale
4.1

Mickledore
4.2

Styhead
5.1

Walnascar
5.2

Whinlatter
5.3

Wrynose
6.0

Kirkstone (LTS)
4.0

Scarthgap (LTS)
5.0

Oct.
2023

Oct.
2024

Oct.
2025

Oct.
2022

Apr
2022

Apr.
2024

Apr.
2025

Apr.
2026

Apr.
2023

Oct.
2026

Oct.
2027

Apr.
2027

Apr.
2028

Oct.
2028

Apr.
2029

Oct.
2029

Apr.
2030

Legend

Future

Current (Apr. 25)

End-of-life

Nanbield
4.3

Michael Opdenacker Securing Yocto Built Systems 8/ 54

Choose your kernel carefully commit
root

An LTS kernel from kernel.org is the best solution to get
kernel updates quickly
linux-yocto is pretty well supported, you can wait a few
weeks for updates.
Vendor kernels support your hardware well, but they are not
meant to include vulnerability fixes in a timely fashion. They
can also be pretty outdated.

Michael Opdenacker Securing Yocto Built Systems 9/ 54

https://kernel.org

Create Your Own Distribution commit
root

Build your own distribution, don’t start from Poky
Poky is made for testing purposes, it has way too
many unnecessary features
Unnecessary features increase the attack surface
No problem to start from scratch!

conf/distro/distro-prod.conf
DISTRO = "distro-prod"
DISTRO_NAME = "Production Distro"
DISTRO_VERSION = "1.0"

INIT_MANAGER = "systemd"

Michael Opdenacker Securing Yocto Built Systems 10/ 54

Production and Development Images commit
root

Good practise early enough during development
Maintain a development image alongside the production
image
Development settings isolated from the start from the
production one
Less risk of forgetting debug features in the production image

Note: diagram created with https://excalidraw.io

Development
image

Production
image

image-prod.bb image-dev.bb

image-common.inc

distro-
prod.conf distro-dev.conf

distro-common.inc

Production and development
images

Michael Opdenacker Securing Yocto Built Systems 11/ 54

https://excalidraw.io

A look at the meta-security layer commit
root

Maintained by Scott Murray and Marta Rybczynska (thanks!)

meta-integrity: support for Linux Integrity
Measurement Architecture (IMA)
meta-parsec: support for PARSEC, common API
to hardware security and cryptographic services
meta-tpm: TPM device support
recipes-compliance: support for openSCAP
(security audits)
recipes-core: mostly images and package
groups
recipes-ids: support for Intrusion Detection
Systems (Samhain, Suricata)

recipes-mac: support for AppArmor and SMACK
recipes-scanners: support for multiple scanners
(but some are broken)
recipes-security: support for multiple utilities

Note: the security DISTRO_FEATURE has a very
limited scope: it just adds a few configuration
fragments to the kernel (SMACK, AppArmor,
dm-verity, eCryptfs, LKRG)

My conclusion: mostly useful for the features it
supports. Other packages won’t be compiled with
tighter security features.

Michael Opdenacker Securing Yocto Built Systems 12/ 54

https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO_FEATURE

Securing Yocto Built Systems commit
root

System Hardening

Michael Opdenacker Securing Yocto Built Systems 13/ 54

Securing Yocto Built Systems commit
root

System Hardening
Reduce the Attack Surface

Michael Opdenacker Securing Yocto Built Systems 14/ 54

Disable Debugging Image Features (1) commit
root

Walnascar (6.2) removed the debug-tweaks image feature.
There was too much risk to forget it in a configuration file.
It was corresponding to these image features:

allow-empty-password
allow-root-login
empty-root-password
post-install-logging

Michael Opdenacker Securing Yocto Built Systems 15/ 54

Disable Debugging Image Features (2) commit
root

Enable these debugging image features only in the
development image:

allow-empty-password

empty-root-password

tools-debug: installs debugging tools such as strace
and gdb

perf: installs profiling tools such as perf, systemtap,
and lttng

tools-sdk: installs a full SDK that runs on the device.

Review all IMAGE_FEATURES on
https://docs.yoctoproject.org/ref-manual/
features.html#ref-features-image

recipes-core/images/image-dev.bb

IMAGE_FEATURES += "allow-empty-password \
allow-root-login \
empty-root-password \
tools-debug \
tools-sdk \
post-install-logging"

Michael Opdenacker Securing Yocto Built Systems 16/ 54

https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/features.html#ref-features-image
https://docs.yoctoproject.org/ref-manual/features.html#ref-features-image

Disable Distro Features commit
root

In the production image, it’s also good to remove unnecessary DISTRO_FEATURES

$ bitbake-getvar DISTRO_FEATURES
DISTRO_FEATURES="acl alsa bluetooth debuginfod ext2 ipv4 ipv6 pcmcia usbgadget usbhost wifi
xattr nfs zeroconf pci 3g nfc x11 vfat seccomp systemd usrmerge pulseaudio gobject-
introspection-data ldconfig"

Remove the unnecessary ones:

conf/distro/distro-prod.conf
DISTRO_FEATURES:remove = "alsa bluetooth debuginfod pcmcia usbgadget usbhost \
wifi xattr nfs zeroconf pci 3g nfc x11 vfat pulseaudio

Result:

$ bitbake-getvar DISTRO_FEATURES
DISTRO_FEATURES="acl ext2 ipv4 ipv6 seccomp systemd usrmerge gobject-introspection-
data ldconfig"

Michael Opdenacker Securing Yocto Built Systems 17/ 54

https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO_FEATURES

Remove Unnecessary Packages (1) commit
root

To figure out installed packages
bitbake-getvar doesn’t help here,
because images are defined by packagegroups:

$ bitbake-getvar -r core-image-minimal IMAGE_INSTALL
IMAGE_INSTALL="packagegroup-core-boot u-boot"

The best way is to look at the contents of the image manifest in
tmp/deploy/images/<machine>/<image>-
<machine>.rootfs.manifest

Manifest for core-image-minimal +
u-boot on release Styhead

Michael Opdenacker Securing Yocto Built Systems 18/ 54

Remove Unnecessary Packages (2) commit
root

To remove the unwanted packages from the production image:
For the same reasons, IMAGE_INSTALL:remove doesn’t always work.
Instead, use PACKAGE_EXCLUDE:

conf/distro/distro-prod.conf
Packages to skip installing
PACKAGE_EXCLUDE += "busybox-udhcpc kbd-keymaps-pine"

Michael Opdenacker Securing Yocto Built Systems 19/ 54

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_EXCLUDE

Securing Yocto Built Systems commit
root

System Hardening
Harden Password Security

Michael Opdenacker Securing Yocto Built Systems 20/ 54

Use Stronger Passwords commit
root

https://www.linkedin.com/posts/clayr_genius-takes-many-forms-activity-7211897352754798592-Ir0T/

Michael Opdenacker Securing Yocto Built Systems 21/ 54

https://www.linkedin.com/posts/clayr_genius-takes-many-forms-activity-7211897352754798592-Ir0T/

Device Specific Credentials commit
root

Yocto lets you create specific users, groups and
passwords using the extrausers class.

However, these apply to all devices

Shared credentials, if compromized on a
device, compromise the security of the whole
fleet

One solution: set credentials at first boot

Another solution: expire credentials to force
users to modify them at the next (actually
first) login.

Drawback: as long as you haven’t logged in,
the original password remains.

$ man passwd
...

-e, --expire
Immediately expire an account's password.
This in effect can force a user to change
their password at the user's next login.

...

passwd -e root

qemux86-64 login: root
Password:
Your password has expired. Choose a new password.
Changing password for root
Enter the new password (minimum of 5 characters)
Please use a combination of upper and lower case letters and numbers.
New password:
Re-enter new password:
passwd: password changed.

Michael Opdenacker Securing Yocto Built Systems 22/ 54

https://docs.yoctoproject.org/ref-manual/classes.html#extrausers

Setting Root Password At First Boot (1) commit
root

If you have systemd, you can use systemd-firstboot to set the root password, without
having to create a shared initial password.

Compile systemd with firstboot support, typically in your distro.conf file:

conf/distro/secure-distro.conf
PACKAGECONFIG:append:pn-systemd = " firstboot"

Michael Opdenacker Securing Yocto Built Systems 23/ 54

Setting Root Password At First Boot (2) commit
root

Create a firstboot.conf file to customize the getty (login prompt) service

recipes-core/systemd/files/firstboot.conf
[Unit]
Description=First Boot Root Password Setup

[Service]
ExecStartPre=/bin/sh -c '[-f /etc/firstboot.done] || /usr/bin/sed -i "/^root:/d" /etc/shadow'
ExecStartPre=/bin/sh -c '[-f /etc/firstboot.done] || /usr/bin/systemd-firstboot --prompt-root-password'
ExecStartPre=/bin/sh -c '[-f /etc/firstboot.done] || /bin/touch /etc/firstboot.done'
TTYReset=yes
TTYVHangup=yes

The -f /etc/firstboot.done test is repeated, because if you set it as a precondition, the unit fails
and getty is not even started.

Michael Opdenacker Securing Yocto Built Systems 24/ 54

Setting Root Password At First Boot (3) commit
root

Create a recipe to deploy this file

recipes-core/systemd/systemd-firstboot-getty.bb
DESCRIPTION = "Systemd service add-on to prompt for a root password at first boot"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/CC-BY-4.0;md5=9b33bbd06fb58995fb0e299cd38d1838"

SRC_URI += "file://firstboot.conf"

S = "${UNPACKDIR}"

do_install() {
install -d ${D}${systemd_system_unitdir}/serial-getty@.service.d
install -m 0644 ${S}/firstboot.conf ${D}${systemd_system_unitdir}/serial-getty@.service.d

}

FILES:${PN} += "${systemd_system_unitdir}/serial-getty@.service.d/firstboot.conf"

Michael Opdenacker Securing Yocto Built Systems 25/ 54

Securing Yocto Built Systems commit
root

System Hardening
User-space Hardening

Michael Opdenacker Securing Yocto Built Systems 26/ 54

Use Compiler Hardening Features commit
root

OpenEmbedded Core ships with compiler hardening features:

meta/conf/distro/include/security_flags.inc

meta/conf/distro/include/rust_security_flags.inc

conf/distro/distro-prod.conf
require conf/distro/include/security_flags.inc
require conf/distro/include/rust_security_flags.inc

Michael Opdenacker Securing Yocto Built Systems 27/ 54

https://git.yoctoproject.org/poky/tree/meta/conf/distro/include/security_flags.inc
https://git.yoctoproject.org/poky/tree/meta/conf/distro/include/rust_security_flags.inc

Need for Production Test Image commit
root

At this stage, need some tools to test the
production image

Don’t want to put them in the development
image, will get false positives with
development tools and features.

Don’t want to leave them in the production
image, could be used to reveal weak spots.
They may also pull unwanted dependencies.

Solution: create a third ”Production test”
image.

Development
image

Production
image

image-prod.bb image-dev.bb

image-common.inc

distro-
prod.conf distro-dev.conf

distro-common.inc

Production test, production and development
images

Production
test image

image-test-
prod.bb

Michael Opdenacker Securing Yocto Built Systems 28/ 54

Looking for User-space Hardening Checkers commit
root

Looked at tools in meta-security

buck-security: security scanner for Debian and Ubuntu Linux.
Builds but currently broken, and the project has been idle for 10 years.
Not interested in reviving a Perl based project .
checksec: scan your system for several simple security holes.
Also broken, the commands given as examples don’t work.
Maintained by Debian but not actively maintained anyway.
nikto: web server scanner
Still maintained, but broken too (also in Perl)

?
Does anybody know a good (and modern!) security

scanner we could use for userspace hardening?

Answers from the audience:
Lynis (https://cisofy.com/lynis/)
OpenSCAP (https://www.open-scap.org/)

Both are supported by meta-security)

Michael Opdenacker Securing Yocto Built Systems 29/ 54

https://cisofy.com/lynis/
https://www.open-scap.org/

Securing Yocto Built Systems commit
root

System Hardening
Run Public Services With Limited Resources

Michael Opdenacker Securing Yocto Built Systems 30/ 54

The lightttpd case commit
root

Surprised to see that lighttpd in OE-core is run as root
If the web server is compromised, the whole system is!
Important to run public services with restricted privileges and
resources.

Michael Opdenacker Securing Yocto Built Systems 31/ 54

Easy To Fix With Systemd! commit
root

Let’s modify lighttpd.service provided by the
lighttpd sources:

Make the service run with user lighttpd and
group daemon:

User=lighttpd
Group=daemon

We can also restrict privileges to the bare
minimum:

If not starting lighttpd as root,
minimal capability to bind to ports < 1024:
CapabilityBoundingSet=CAP_NET_BIND_SERVICE

Another issue: lighttpd won’t be able to write
its log to /var/log (owned by root by default).
As /var/log is volatile (tmpfs), a solution is to
change its permissions before starting the
service:

"+" means running the command as root
ExecStartPre=+/bin/chgrp daemon /var/log
ExecStartPre=+/bin/chmod 775 /var/log

Then the server runs as intended:

root@qemux86-64:~# ps | grep light
249 lighttpd 9312 S /usr/sbin/lighttpd -D -f ...
258 root 4056 S grep light

Michael Opdenacker Securing Yocto Built Systems 32/ 54

Practical Implementation commit
root

Changes to my custom layer:

recipes-extended/lighttpd
|-- files
| `-- lighttpd.service
`-- lighttpd_%.bbappend

2 directories, 2 files

recipes-extended/lighttpd/lighttpd_%.bbappend

FILESEXTRAPATHS:prepend := "${THISDIR}/files:"

Create lighttpd user, group daemon
inherit useradd
USERADD_PACKAGES = "${PN}"
USERADD_PARAM:${PN} = "--system --no-create-home --gid daemon \

--shell /usr/sbin/nologin lighttpd"

Customize lighttpd.service
SRC_URI += "file://lighttpd.service"

do_install:append() {
install -d ${D}${systemd_system_unitdir}
install -m 0644 ${UNPACKDIR}/lighttpd.service ${D}${systemd_system_unitdir}

}

Michael Opdenacker Securing Yocto Built Systems 33/ 54

Systemd Security Benefits commit
root

Makes it easy to run services and applications with just the necessary privileges

Also possible to limit resources to reduce Denial of Service possibilities:
Access to filesystems and namespaces
RAM
CPU
I/O
Access to network

It would be costly to implement this infrastructure by yourself .

See https://www.man7.org/linux/man-pages/man5/systemd.resource-control.5.html

Michael Opdenacker Securing Yocto Built Systems 34/ 54

https://www.man7.org/linux/man-pages/man5/systemd.resource-control.5.html

Securing Yocto Built Systems commit
root

System Hardening
Kernel and Bootloader Hardening

Michael Opdenacker Securing Yocto Built Systems 35/ 54

Kernel Hardening commit
root

Came across kernel-hardening-checker from Alexander Popov
https://github.com/a13xp0p0v/kernel-hardening-checker

Introduced only in Walnascar (meta-oe)
Reports all the kernel configuration and command line settings which
could be changed to harden the running kernel.

My contributions:
Updated meta-oe to support the latest version: 0.6.10.2 (many
recent changes), supporting a -a option and the RISC-V
architecture (link)
Submitted a backport to Scarthgap too (link)

recipes-core/images/image-prod-test.bb
IMAGE_INSTALL += "kernel-hardening-checker"

Michael Opdenacker Securing Yocto Built Systems 36/ 54

https://github.com/a13xp0p0v/kernel-hardening-checker
https://git.openembedded.org/meta-openembedded/commit/?id=5ae3536204ba3764b03647ab75169ee65ca43531
https://lore.kernel.org/openembedded-devel/20250819203929.1272607-1-michael.opdenacker@rootcommit.com/T/#u

kernel-hardening-checker example output commit
root

...
Michael Opdenacker Securing Yocto Built Systems 37/ 54

Kernel Hardening Notes commit
root

Kernel configuration: remove unnecessary features
This reduces the attack surface, and boot time too!
Yocto stores kernel modules in separate packages. This helps to
identify unnecessary ones!

See security/self-protection (kernel documentation) for details
about kernel protection techniques.

Michael Opdenacker Securing Yocto Built Systems 38/ 54

https://www.kernel.org/doc/html/latest/security/self-protection.html

Bootloader Hardening commit
root

A wide topic too!
Make sure your bootloader is well maintained. Use mainline U-Boot if
possible.
Implement secure boot or verified boot if possible.
No documentation available in in U-Boot to increase security.

Lock down your serial console. Pretty easy to attack or brick a device if
you have U-Boot shell access.

Completely disable the interactive shell:
CONFIG_BOOTDELAY=-2
Or require a specific string to unlock it:
CONFIG_AUTOBOOT_ENCRYPTION=y

Disable all unnecessary features (network, filesystems, usb-serial...) and
devices (USB, SD card...)

Michael Opdenacker Securing Yocto Built Systems 39/ 54

Securing Yocto Built Systems commit
root

System Hardening
Other Hardening Techniques

Michael Opdenacker Securing Yocto Built Systems 40/ 54

Read-Only Filesystem commit
root

Very easy to implement with Yocto, whatever the init manager
Add this image feature:

recipes-core/images/image-prod.bb
IMAGE_FEATURES += "read-only-rootfs"

Just make sure that the mount point(s) for your read-write
partition(s) are created at root filesystem creation time. The
mounts points are created on demand by systemd when you have
a read-write root filesystem.

recipes-core/images/image-common.bb
Create mount point for data partition
do_rootfs[postfuncs] += "image_create_data_dir"

image_create_data_dir() {
install -d ${IMAGE_ROOTFS}/data

}
Don’t write, this is read-only!

Michael Opdenacker Securing Yocto Built Systems 41/ 54

overlayfs.bbclass and overlayfs-etc.bbclass commit
root

Had to use the overlayfs-etc to allow to modify
/etc/shadow and /etc/passwd for setting the root
password at first boot.
Except for this special need, systemd started the
system without a single issue when the whole root
filesystem is read-only .
This works as important ”dynamic” files (such as
/etc/resolv.conf are links to volatile mount points.
Had no need for the overlayfs class (for the whole
root filesystem), but this may be needed to allow
applications to make local changes to the root
filesystem, while the base system remains read-only.

recipes-core/images/image-prod.bb
IMAGE_FEATURES += "overlayfs-etc"
OVERLAYFS_ETC_MOUNT_POINT = "/data"
OVERLAYFS_ETC_DEVICE = "/dev/mmcblk0p3"
OVERLAYFS_ETC_FSTYPE ?= "ext4"

recipes-kernel/linux/linux-yocto_%.bbappend

FILESEXTRAPATHS:prepend := "${THISDIR}/files:"
SRC_URI += "file://overlayfs.cfg"

recipes-kernel/linux/files/overlayfs.cfg
CONFIG_OVERLAY_FS=y

Michael Opdenacker Securing Yocto Built Systems 42/ 54

https://docs.yoctoproject.org/ref-manual/classes.html#overlayfs-etc
https://docs.yoctoproject.org/ref-manual/classes.html#overlayfs

Securing Yocto Built Systems commit
root

Maintaining your system

Michael Opdenacker Securing Yocto Built Systems 43/ 54

Securing Yocto Built Systems commit
root

Maintaining your system
Addressing Vulnerabilities

Michael Opdenacker Securing Yocto Built Systems 44/ 54

How vulnerability checking works commit
root

Vulnerability
database

CVE_A
CVE_B
CVE_C
...

Security
researchers

cve-check.bbclass

recipe

update database

recipe has a patch?

impacted by CVE
(comparing versions)?

yes

no

found vulnerability

report

Michael Opdenacker Securing Yocto Built Systems 45/ 54

Enable vulnerability checking commit
root

Add this to conf/local.conf:
INHERIT += "cve-check"

This will add a CVE task to the recipes you’re building
You may also want to ignore CVEs that are irrelevant to Poky and OE-core:
include conf/distro/include/cve-extra-exclusions.inc

To speed up NVD database dowloads, request a unique key (NVDCVE_API_KEY)
NVDCVE_API_KEY = "xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx"
Then, bitbake your regular image,
and the checks will be run (without running the other tasks if not necessary)
You can also run checks on specific recipes:
$ bitbake -c cve_check linux-yocto

Michael Opdenacker Securing Yocto Built Systems 46/ 54

https://docs.yoctoproject.org/ref-manual/variables.html#term-NVDCVE_API_KEY

Exploiting vulnerability report commit
root

Simple command:
$ grep Unpatched build/tmp/log/cve/cve-summary.json | wc -l
39

VulnScout (https://github.com/savoirfairelinux/vulnscout) is a
new tool to process the vulnerability report and the project SPDX.

At last, a tool to consume Yocto SPDX output and generate a
vulnerability assessment for it!
Supports SPDX 2.3, SPDX 3.0, CycloneDX, Yocto JSON
vulnerability output
All you need to deliver to the customer is Yocto’s initial
vulnerability report and the SPDX description of the system.
The customer then doesn’t need Yocto to scout for new
vulnerabilities and make her/his own assessment at any time.
Contributed to it through bug reports and small documentation
patches. Even had a private demo from the developers.

Michael Opdenacker Securing Yocto Built Systems 47/ 54

https://github.com/savoirfairelinux/vulnscout

VulnScout — How to Use commit
root

VulnScout can directly be used on Yocto’s SPDX and cve-check outputs, but
you have to create a YAML configuration file.

However, it’s easier to use with the meta-vulnscout layer
https://github.com/savoirfairelinux/meta-vulnscout
Supports: Yocto 5.0 (Scarthgap), 5.2 (Walnascar) and 5.3 (Whinlatter)
Just inherit the vulnscout class in an image:

recipes-core/images/image-prod.bb
inherit vulnscout

Building the image generates the YAML file for Vulnscout and a
command line to start the tool:

$ docker rm -f vulnscout
$ docker-compose -f ".vulnscout/image-prod-test-beaglebone-
yocto/docker-compose.yml" up

You can keep the .vulnscout directory for future use outside of Yocto.

VulnScout’s web interface

Michael Opdenacker Securing Yocto Built Systems 48/ 54

https://github.com/savoirfairelinux/meta-vulnscout

Addressing vulnerabilities in your products commit
root

If a fix is found (typically upstream), add the
patch to your recipe

Include the CVE identifier in the patch file
name (recommended)
Add a CVE:<id> line to the patch
Also set an Upstream-Status: field.
https://docs.yoctoproject.org/
contributor-guide/
recipe-style-guide.html#
patch-upstream-status

Share your patch with the Yocto
community!

Of course, another option is to upgrade to a
newer version of upstream (if available).

meta/recipes-bsp/grub/files/CVE-2025-0622-01.patch

From 2123c5bca7e21fbeb0263df4597ddd7054700726 Mon Sep 17 00:00:00 2001
From: B Horn <b@horn.uk>
Date: Fri, 1 Nov 2024 19:24:29 +0000
Subject: [PATCH 1/3] commands/pgp: Unregister the "check_signatures" hooks on
module unload

If the hooks are not removed they can be called after the module has
been unloaded leading to an use-after-free.

Fixes: CVE-2025-0622

Reported-by: B Horn <b@horn.uk>
Signed-off-by: B Horn <b@horn.uk>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>

CVE: CVE-2025-0622
Upstream-Status: Backport [https://git.savannah.gnu.org/cgit/grub.git/commit/?id=2123c5bca7e21fbeb...]
Signed-off-by: Peter Marko <peter.marko@siemens.com>

grub-core/commands/pgp.c | 2 ++
1 file changed, 2 insertions(+)

diff --git a/grub-core/commands/pgp.c b/grub-core/commands/pgp.c
index c6766f044..5fadc33c4 100644
--- a/grub-core/commands/pgp.c
+++ b/grub-core/commands/pgp.c
@@ -1010,6 +1010,8 @@ GRUB_MOD_INIT(pgp)

GRUB_MOD_FINI(pgp)
{

+ grub_register_variable_hook ("check_signatures", NULL, NULL);
+ grub_env_unset ("check_signatures");

grub_verifier_unregister (&grub_pubkey_verifier);
grub_unregister_extcmd (cmd);
grub_unregister_extcmd (cmd_trust);

Michael Opdenacker Securing Yocto Built Systems 49/ 54

https://docs.yoctoproject.org/contributor-guide/recipe-style-guide.html#patch-upstream-status
https://docs.yoctoproject.org/contributor-guide/recipe-style-guide.html#patch-upstream-status
https://docs.yoctoproject.org/contributor-guide/recipe-style-guide.html#patch-upstream-status
https://docs.yoctoproject.org/contributor-guide/recipe-style-guide.html#patch-upstream-status
https://git.yoctoproject.org/poky/tree/meta/recipes-bsp/grub/files/CVE-2025-0622-01.patch

Ignoring vulnerabilities in your products commit
root

You can also modify the recipe to mark some vulnerabilities as irrelevant:

meta/recipes-devtools/rust/rust-source.inc
CVE_STATUS[CVE-2024-24576] = "not-applicable-platform: Issue only applies on Windows"

You can also group vulnerabilities that can be ignored in the same way:

meta/recipes-extended/logrotate/logrotate_3.22.0.bb
CVE_STATUS_GROUPS = "CVE_STATUS_RECIPE"
CVE_STATUS_RECIPE = "CVE-2011-1548 CVE-2011-1549 CVE-2011-1550"
CVE_STATUS_RECIPE[status] = "not-applicable-platform: CVE is debian, gentoo or SUSE specific on the way logrotate was installed/used"

See ”Checking for Vulnerabilities” in the Yocto Manual:
https://docs.yoctoproject.org/dev-manual/vulnerabilities.html

Michael Opdenacker Securing Yocto Built Systems 50/ 54

https://git.yoctoproject.org/poky/tree/meta/recipes-devtools/rust/rust-source.inc
https://git.yoctoproject.org/poky/tree/meta/recipes-extended/logrotate/logrotate_3.22.0.bb
https://docs.yoctoproject.org/dev-manual/vulnerabilities.html

Securing Yocto Built Systems commit
root

Closing

Michael Opdenacker Securing Yocto Built Systems 51/ 54

Key Takeaways � commit
root

Use LTS versions of Yocto and kernel
Need 3 images: dev, prod and
prod-test
Remove unnessary packages and features
No shared passwords between devices
Read-only root filesystems are easy
Use systemd to restrict priviledges and
resources of applications and services.

kernel-hardening-checker: great tool
for kernel hardening
Looking for tools for checking userspace
hardening
More hardening needed: secure / verified
boot, TPM, firewall, encryption, extended
file attributes, Linux Security Modules...
VulnScout: new tool to run vulnerability
assessments from Yocto SPDX output
You are going to be busy

Michael Opdenacker Securing Yocto Built Systems 52/ 54

Useful Resources commit
root

My meta-security-demo layer containing the code shown
here (supports QEMU x86-64 and BeagleBone):
https://gitlab.com/rootcommit/meta-security-demo

Esa Jääskelä — Yocto Hardening
Series of blog posts about many aspects of the topic
Fun and exhaustive!
https://ejaaskel.dev/yocto-hardening/

Esa Jäaskelä — Sulka Secure Yocto Distribution
A good example!
https://codeberg.org/altidSec/meta-sulka-distro

Darknet Diaries
My favorite English speaking podcast about IT (in)security
https://darknetdiaries.com/

https://shop.darknetdiaries.com

Michael Opdenacker Securing Yocto Built Systems 53/ 54

https://gitlab.com/rootcommit/meta-security-demo
https://ejaaskel.dev/yocto-hardening/
https://codeberg.org/altidSec/meta-sulka-distro
https://darknetdiaries.com/
https://shop.darknetdiaries.com

Thank you commit
root

Questions? Comments?
mo@rootcommit.com

https://fosstodon.org/@MichaelOpdenacker

XMPP: omichael@conversations.im

Signal: rootcommit.01

Slides available under the CC-By-SA 4.0 license
https://rootcommit.com/pub/conferences/2025/elce/
yocto-security/

Sources (LATEX):
https://gitlab.com/rootcommit/yocto-security/

Michael Opdenacker Securing Yocto Built Systems 54/ 54

https://fosstodon.org/@MichaelOpdenacker
https://rootcommit.com/pub/conferences/2025/elce/yocto-security/
https://rootcommit.com/pub/conferences/2025/elce/yocto-security/
https://gitlab.com/rootcommit/yocto-security/

	Introduction
	Getting Started
	System Hardening
	Reduce the Attack Surface
	Harden Password Security
	User-space Hardening
	Run Public Services With Limited Resources
	Kernel and Bootloader Hardening
	Other Hardening Techniques

	Maintaining your system
	Addressing Vulnerabilities

	Closing

