
Yocto Project and OpenEmbedded Training Course
Training course

Michael Opdenacker

Root Commit

June 9, 2025

commit
root

© 2024-2025 Root Commit. Licensed under CC BY-SA 4.0.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 1/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Introduction

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 2/ 220

License of these training materials commit
root

Attribution-ShareAlike 4.0 International

You are free to:
Share — copy and redistribute the material in any medium or format for any
purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even
commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit , provide a link to the license, and
indicate if changes were made . You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.
ShareAlike — If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Sources: https://gitlab.com/rootcommit/training-materials/

https://creativecommons.org/licenses/by-sa/4.0/

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 3/ 220

https://gitlab.com/rootcommit/training-materials/
https://creativecommons.org/licenses/by-sa/4.0/

Credits commit
root

Swaminathan K, Johannes Zink, Martin Herren

You can help making this course better and add your name to the above list
by sending suggestions, testing the instructions and reporting typos and bugs.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 4/ 220

Michael Opdenacker commit
root

Embedded Linux consultant and trainer

https://rootcommit.com/about/michael-opdenacker/

Former founder of Bootlin
New founder of Root Commit
Offering embedded Linux training courses with a focus on
practical activities, interactivity and learning techniques.
https://rootcommit.com/training/

Free Software enthusiast and advocate
(member of April.org)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 5/ 220

https://rootcommit.com/about/michael-opdenacker/
https://bootlin.com
https://rootcommit.com
https:/rootcommit.com/training/
https://rootcommit.com/training/our-difference/
https://rootcommit.com/training/

Yocto Project and OpenEmbedded Experience commit
root

First used it in 2004 — Very close to the beginning

Conducted several customer projects

Shared experience through multiple technical
presentations. See videos too.

Yocto Project trainer since 2023

2021–2024: Official documentation maintainer for the
Yocto Project

Contributions to BitBake, Openembedded Core and
Meta Openembedded.

Contributor to the Yocto Project advocacy group — Try
to find me on https://www.yoctoproject.org/
about/project-overview/!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 6/ 220

https://rootcommit.com/about/michael-opdenacker#yocto-presentations
https://rootcommit.com/about/michael-opdenacker#yocto-presentations
https://www.youtube.com/playlist?list=PL96KjXJdfnA3rua9WJaj4oCNxMDm_YCdM
https://rootcommit.com/about/michael-opdenacker#contributions
https://www.yoctoproject.org/about/project-overview/
https://www.yoctoproject.org/about/project-overview/

Yocto Project and OpenEmbedded Training Course commit
root

Introduction
First demo

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 7/ 220

BeagleBone Black Demo commit
root

BeagleBone Black board from BeagleBoard.org
ARM32 Cortex A8 CPU, the only board officially
supported by Yocto at the moment
Using Yocto Styhead 5.1 (latest stable)

Image credits: BeagleBoard.org

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 8/ 220

https://beagleboard.org

Yocto Project and OpenEmbedded Training Course commit
root

Introduction
Learning Techniques

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 9/ 220

Experience from 20+ years of training commit
root

Need challenging labs (good)
But too long series of lectures, people passive for too long
And tendency to explain the whole theory (as exhaustively as possible), before letting
people experiment
And quiz only at the end
You forget quickly if you stop using

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 10/ 220

What I’m trying to do commit
root

More practical lab time

Challenging labs
You don’t learn from labs that are too easy
If you don’t know how to do something, it’s often
because you missed something in the lectures
Making mistakes is very positive: that’s how you
build experience and correct misconceptions
And the instructor is here to avoid staying stuck
for too long

Online sessions: people do their labs instead of just
watching demos
More interaction with the audience
Lectures should never exceed 30 minutes
(except if many questions)
More self-testing (quizzes)

https://rootcommit.com/2024/make-it-stick-book-review/

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 11/ 220

https://rootcommit.com/2024/make-it-stick-book-review/

Lab — Preparing Your Environment commit
root

Check PC requirements
Check your GNU/Linux distribution
Download your lab data

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 12/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Introduction
Embedded Linux

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 13/ 220

Question commit
root

What’s common between...

Thermoplan coffee machine

Stream Unlimited audio hardware modules

BMW In Vehicle Infotainment

Comcast set top boxes

Ikea Dirigera smart home hub

FLIR C5 infrared camera

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 14/ 220

Answer commit
root

They are all using Embedded Linux

And their system image was built by Yocto
Like tens of thousands of other devices
https://wiki.yoctoproject.org/
wiki/Project_Users

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 15/ 220

https://wiki.yoctoproject.org/wiki/Project_Users
https://wiki.yoctoproject.org/wiki/Project_Users

Answer commit
root

They are all using Embedded Linux
And their system image was built by Yocto

Like tens of thousands of other devices
https://wiki.yoctoproject.org/
wiki/Project_Users

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 15/ 220

https://wiki.yoctoproject.org/wiki/Project_Users
https://wiki.yoctoproject.org/wiki/Project_Users

Answer commit
root

They are all using Embedded Linux
And their system image was built by Yocto
Like tens of thousands of other devices
https://wiki.yoctoproject.org/
wiki/Project_Users

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 15/ 220

https://wiki.yoctoproject.org/wiki/Project_Users
https://wiki.yoctoproject.org/wiki/Project_Users

Differences with regular Linux systems commit
root

Regular ”GNU/Linux” systems
Runs on a high-end processor (x86 or ARM)
High RAM and disk space requirements,
expensive hardware
Standard distribution, maintained by the
distro vendor (Red Hat, Debian...)
Standard and versatile software stack
Linux kernel with a standard configuration,
supported by the distro vendor, close to
mainline.
Very frequent security updates, managed by
the distro vendor.

Embedded Linux systems
Runs on a less powerful, cheaper processors
(mostly ARM and RISC-V)
Low RAM and disk space requirements,
cheaper hardware
Most often, custom root filesystem, built
and maintained independently
Most often, dedicated software stack (”just
include what you need”)
Linux kernel with a custom configuration,
often maintained by the hardware vendor
and with custom changes.
Less frequent or no security updates,
managed by the system vendor.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 16/ 220

How the system is built commit
root

Manually

Build everything from
source

Great for learning (!),
manageable for very
simple or demo systems

But not reproducible (!)

Copyright: Dargaud (Lucky Luke)

Using automated tools

Buildroot

Yocto Project

Most popular solution!

Using a binary distribution

Regular desktop/server
distributions: Debian,
Ubuntu, Fedora,
OpenSUSE

Embedded friendly
distributions: Alpine

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 17/ 220

https://www.cinebook.co.uk/?cPath=172

Yocto in a Nutshell commit
root

Main components
BitBake: task scheduler
Recipes: how to build specific
components from source
Layers: collections of recipes

What Yocto does

Parse
config files

Parse
recipes

Build
"native"
recipes

Build
target
recipes

Build
disk
image

Development tools
to be run on your PC

Binaries and other data
to be used on your board

What you eventually
flash on your board

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 18/ 220

Yocto History commit
root

2003: creation of OpenEmbedded, merging the efforts of OpenZaurus, Familiar Linux and
OpenSIMpad.
2010: creation of the Yocto Project by the Linux Foundation (project number 2!), with
BitBake and core OpenEmbedded recipes as foundations. A lot of money invested from
the LF and project members (development, support, documentation, events...).
2020: First Long Term Support release.
Today: You’re investing in your Yocto skills!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 19/ 220

Yocto sub-projects and terminology commit
root

bitbake

openembedded-core

meta-openembedded

OpenEmbedded

Poky

meta-poky

meta-
yocto-bsp

documenta
tion

Yocto Project

Compatible
BSPs

Compatible
layers

Autobuilder

Pseudo

git.openembedded.org

git.yoctoproject.org

Funding
+ management

Infra-
structure

Members

Technical
Steering

Committee

Events

Events

Technical
Steering

Committee

OpenEmbedded: BitBake scheduler + standard recipes + tools

Poky: reference distribution

Yocto Project: umbrella project

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 20/ 220

Yocto releases commit
root

Langdale
4.1

Mickledore
4.2

Styhead
5.1

Walnascar
5.2

Whinlatter
5.3

Wrynose
6.0

Kirkstone (LTS)
4.0

Scarthgap (LTS)
5.0

Oct.
2023

Oct.
2024

Oct.
2025

Oct.
2022

Apr
2022

Apr.
2024

Apr.
2025

Apr.
2026

Apr.
2023

Oct.
2026

Oct.
2027

Apr.
2027

Apr.
2028

Oct.
2028

Apr.
2029

Oct.
2029

Apr.
2030

Legend

Future

Current (Apr. 25)

End-of-life

Nanbield
4.3

Source: https://git.yoctoproject.org/yocto-docs/tree/documentation/ref-manual/svg/releases.svg

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 21/ 220

https://git.yoctoproject.org/yocto-docs/tree/documentation/ref-manual/svg/releases.svg

Lab — First Yocto Build commit
root

Get the source code
Setup the environment
Build your first image, for the BeaglePlay board.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 22/ 220

Quiz — Embedded Linux Introduction Quiz commit
root

→Click here←

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 23/ 220

https://cryptpad.fr/form/#/2/form/view/PiIC74U+BflLen0UmpO0mLdspOAHZxhJPiZkUOhLsus/embed/

Yocto Project and OpenEmbedded Training Course commit
root

Introduction
Learning from BitBake output

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 24/ 220

Lab observations: recipes and tasks commit
root

Recipe name

Task name

What to understand:
Each component to build (program, library, kernel, image) is represented by a recipe.
Each recipe describes a set of tasks: fetch, unpack, compile, install...
BitBake manages build dependencies at the task level, not at the recipe level.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 25/ 220

Lab observations: versions and revisions commit
root

package
version

package
revision

Recipes are deployed through packages (see tmp/deploy/[rpm|ipk|deb])

Packages allow to split components into several parts: binaries, binaries with debug info, headers,
data, documentation... We can just install what we need.

Packages can be removed too, useful to have the ability to remove no-longer needed stuff without
regenerating everything (hello Buildroot)

Each package has a version, which coincides with the recipe version.

Each package has a revision, typically useful to generate different binaries from the same sources
(different configuration, patches applied)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 26/ 220

Lab observations: native recipes commit
root

"native"
recipe

Some recipes have the -native suffix:

native recipes generate code for the host machine (your PC running Yocto)

Yocto prefers to build the tools it needs by itself rather than rely on distribution provided ones.
This brings reproducibility!

Examples: compilers, CMake, QEMU...

Exceptions: Python (needed to run BitBake), git, gcc (needed to build the native gcc)...

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 27/ 220

Lab observations: setscene tasks commit
root

Some tasks have the _setscene suffix:

They correspond to tasks which were already built before in the same conditions (same input).

To save time, their output is retrieved from the Shared State Cache (”Sstate”).

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 28/ 220

Lab observations: did you notice? commit
root

Additional configuration

Here, we have a special task prefixed by mc:k3r5
mc means multiconfig
In the case of the BeaglePlay, multiconfig means generating two images for the board

The default configuration to generate the image for the Cortex-A53 cores in the AM625 SoC.
The k3r5 configuration to generate another image for the Cortex-R5 processor in AM625.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 29/ 220

Lab observations: build output commit
root

arm 64 bit main CPU

arm 32 bit Cortex-R5

Configurations are also shown in the build output.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 30/ 220

Lab observations: key takeaways � commit
root

BitBake processes recipes to build components
Recipes describe multiple tasks: fetching sources, configuring, compiling, installing
BitBake schedules tasks, managing dependencies at task level.
BitBake also builds native recipes: tools for your build machine.
Setscene tasks: tasks which output can be retrieved from the Shared State Cache.
Components are deployed through packages.
With BitBake, you can generate multiple images at once (multiconfig capability).

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 31/ 220

Lab — First Image Boot commit
root

Prepare your board
Flash your new image
Boot the board

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 32/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Getting Started

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 33/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Getting Started
Basic Variable Syntax and Operations

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 34/ 220

BitBake variables commit
root

Two types of variables:
Global variables:
Defined in configuration files (.conf)
Local variables:
Defined in recipe files.
Can also be accessed from
configuration files.
Recipes can also access global
variables.

Variables names are uppercase names
by convention. Example:
KERNEL_LOCALVERSION
Variable values are strings. Example:
ZSTD_LEGACY_SUPPORT ??= "4"

All official Yocto variables: https://docs.yoctoproject.org/genindex.html

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 35/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-KERNEL_LOCALVERSION
https://docs.yoctoproject.org/genindex.html

Variable assignments commit
root

Basic variable assignment:

VAR = "value"

To set an empty string value:

VAR = ""

To set a multi-line value:

VAR = " Yocto \
Is like \
A layered cake"

Note: \n is not interpreted as a newline.

Single quotes are also allowed but
not common:

VAR = 'value'

Except for specifying a value with double
quotes:

VAR = 'I have a " in my value'

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 36/ 220

Checking variable value — bitbake-getvar (1) commit
root

Plain command for global variables:

$ bitbake-getvar MACHINE
NOTE: Starting bitbake server...
#
$MACHINE [3 operations]
set /home/mike/yocto-labs/poky/build/conf/local.conf:40
[_defaultval] "qemux86-64"
set /home/mike/yocto-labs/poky/build/conf/local.conf:290
"beagleplay-ti"
set /home/mike/yocto-labs/poky/meta/conf/documentation.conf:280
[doc] "Specifies the target device for which the image is built. You define MACHINE in the conf/local.conf file in the Build Directory."
pre-expansion value:
"beagleplay-ti"
MACHINE="beagleplay-ti"

$ bitbake-getvar IMAGE_INSTALL
NOTE: Starting bitbake server...
The variable 'IMAGE_INSTALL' is not defined

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 37/ 220

Checking variable value — bitbake-getvar (2) commit
root

Use the -r option to get a variable local to a recipe:

$ bitbake-getvar -r core-image-minimal IMAGE_INSTALL
#
$IMAGE_INSTALL [5 operations]
set /home/mike/yocto-labs/poky/meta/conf/documentation.conf:218
[doc] "Specifies the packages to install into an image. Image recipes set IMAGE_INSTALL to specify the packages to install into..
set /home/mike/yocto-labs/poky/meta/recipes-core/images/core-image-minimal.bb:3
"packagegroup-core-boot ${CORE_IMAGE_EXTRA_INSTALL}"
set? /home/mike/yocto-labs/poky/meta/classes-recipe/core-image.bbclass:84
"${CORE_IMAGE_BASE_INSTALL}"
set? /home/mike/yocto-labs/poky/meta/classes-recipe/image.bbclass:84
""
set /home/mike/yocto-labs/poky/meta/classes-recipe/image.bbclass:85
[type] "list"
pre-expansion value:
"packagegroup-core-boot ${CORE_IMAGE_EXTRA_INSTALL}"
IMAGE_INSTALL="packagegroup-core-boot "

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 38/ 220

Checking variable value — bitbake -e commit
root

Another possibility to check variable values is bitbake -e
bitbake -e shows the global environment: variables and tasks
bitbake -e <recipe> show the environment for a specific recipe

bitbake -e is useful when you don’t know the variable(s) you’re looking for.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 39/ 220

Default and weak variable assignments commit
root

?= — default assignment
Useful to set a default value, applied
when the variable is still undefined

BITBAKE_PATIENCE ?= "Running low..."

Unlike = statements, it is applied at
parsing time; the first one of this kind
wins.

??= — weak assignment
Last recourse value when no default
value has been set.
Applied at parsing time: the last one
of this kind wins

WATCHDOG_TIMEOUT ??= "60"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 40/ 220

Other operators commit
root

:= — Assigned immediately
+= — Append with a space
=+ — Prepend with a space
.= — Append without a space
=. — Prepend without a space

A := "keeps"
A += "the doctor"
A =+ "a day"
A .= " away"
A =. "An apple "

All these operators, like ?= and ??=, are applied immediately (at parsing time).

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 41/ 220

Variable expansion commit
root

Variables can be expanded in other variables

A = "Thomas Edison"
B = "Nikola Tesla"
C = "${A} vs ${B}"

C := "${A} vs ${B}" is evaluated
immediately
C = "${A} vs ${B}" is evaluated
when C is accessed

Curly braces are mandatory. $A won’t
get expanded.
If A doesn’t exist, ${A} is kept as is
in the string.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 42/ 220

”Override” style operators commit
root

3 additional operators are available, using the ”override” syntax (explained later)

:append: add to the end of a
variable (no space added)

R = "Liberty"
R:append = " Pursuit of \

Happiness"

:prepend: add to the end of a
variable (no space added)

R:prepend = "Life "

:remove: remove all instances
of a substring

R:remove = "Liberty"

Before version 4.0 (Kirkstone), a different override syntax was used (_ instead of :)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 43/ 220

Parsing and evaluation order commit
root

The parsing order is hard to predict, so don’t try to make assumptions.
Instead, try to follow these rules:

Don’t use immediately evaluated operations in conf/local.conf. Use = and override
operators instead.
In recipes and even more in classes (explained later), keep in mind to leave the user the
possibility to modify the default values. Therefore, beware of = and prefer ?= and ??=.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 44/ 220

Evaluation order commit
root

Metadata
- Classes
- Recipes

- Config files

=, ?=, ??=,
:=, +=, =+, .=, =.

in parsing
order

:append :prepend :remove Final value

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 45/ 220

Lab — Basic BitBake variable operators commit
root

Experiment with the various operators
Try to solve a few challenges

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 46/ 220

Quiz — BitBake Variable Operators commit
root

→Click here←

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 47/ 220

https://cryptpad.fr/form/#/2/form/view/nSSsgPrQd+k7BtbrCUlAltpRpVvHP4kBgNkyvpd0ilY/embed/

Lab — Setting up networking commit
root

To enable networking between the PC and board
Host-side networking setup
Board-side networking setup. Configuration changes to
enable a static IP address

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 48/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Getting Started
Adding Packages to an Image

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 49/ 220

Using the IMAGE_INSTALL variable commit
root

Use IMAGE_INSTALL to add packages to an existing image
Remember that packages are installed, not recipes
You don’t need all the packages produced by a recipe
However, very often the main binary package name coincides with the recipe name
Typically appended in conf/local.conf. Examples:

IMAGE_INSTALL:append = " os-release curl"

IMAGE_INSTALL:append = " libflac" # Just libflac, not the flac executable

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 50/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL

Find the recipe(s) you need commit
root

Go to https://layers.openembedded.org/
Click on the Recipes tab
Make a search by recipe name
You get the matching recipes and the layer they belong
to.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 51/ 220

https://layers.openembedded.org/

Install additional layers commit
root

Stay on https://layers.openembedded.org/, and
visit the link for the layer your recipe belongs to.

Follow the link in the button.

In the web repository, follow the link to the
conf/layer.conf file.

Check the LAYERDEPENDS and LAYERSERIES_COMPAT for
additional layers, and for the compatibility with the
Yocto/OE branch you’re using.

Clone the source code of your layer.

Add your layer to conf/bblayers.conf:

$ bitbake-layers add-layer <path-to-layer>

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 52/ 220

https://layers.openembedded.org/
https://docs.yoctoproject.org/ref-manual/variables.html#term-LAYERDEPENDS
https://docs.yoctoproject.org/ref-manual/variables.html#term-LAYERSERIES_COMPAT

Find the package(s) you need commit
root

You first need to build the recipe you are interested in:

bitbake flac

Then, you can query the packages that have been built:

$ oe-pkgdata-util list-pkgs -p flac
flac
flac-dbg
flac-dev
flac-doc
flac-src
libflac
libflac++

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 53/ 220

oe-pkgdata-util script commit
root

oe-pkgdata-util:
Very handy script to query package information
(without having to install a package manager on the target).

oe-pkgdata-util find-path <path>
Find the package providing a path in the image
oe-pkgdata-util lookup-recipe <package>
Find the recipe implementing the package
oe-pkgdata-util list-pkgs -p <recipe>
List packages built by a recipe
oe-pkgdata-util list-pkg-files <package>
List files belonging to a package

If you forget: oe-pkgdata-util --help

Files

Packages

Recipe

fin
d-

pa
th

lookup-recip
e

lis
t-
pk

gs

list-pk
g-files

oe-pkgdata-util subcommands

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 54/ 220

oe-pkgdata-util script — Example commit
root

$ oe-pkgdata-util list-pkgs -p flac
flac
flac-dbg
flac-dev
flac-doc
flac-src
libflac
libflac++

$ oe-pkgdata-util list-pkg-files libflac
libflac:
/usr/lib/libFLAC.so.12
/usr/lib/libFLAC.so.12.1.0

$ oe-pkgdata-util find-path /usr/lib/libFLAC.so.12
libflac: /usr/lib/libFLAC.so.12

$ oe-pkgdata-util lookup-recipe libflac
flac

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 55/ 220

Add Packages to an Image — Key Takeaways commit
root

IMAGE_INSTALL takes package names, not
recipe names

One recipe can generate multiple packages:
binaries, libraries, documentation...

oe-pkgdata-util allows to navigate between
recipes, packages and files Files

Packages

Recipe

fin
d-

pa
th

lookup-recip
e

lis
t-
pk

gs

list-pk
g-files

oe-pkgdata-util subcommands

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 56/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL

Lab — Adding Packages to an Image commit
root

To add software that we will need in later labs
Look for recipes
Look for packages to install

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 57/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Getting Started
Documentation

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 58/ 220

Yocto Manuals Walkthrough commit
root

You’re talking to the right person
(former docs maintainer)

Multiple manuals:
Yocto manuals
BitBake manual

Variable references in these materials link to the
manuals. Example: CFLAGS

https://docs.yoctoproject.org

Let’s take a tour!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 59/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-CFLAGS
https://docs.yoctoproject.org

Lab — Build Image for an Emulated ARM64 Machine commit
root

Build for another machine: genericarm64
Also on another release
Test the image with QEMU

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 60/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 61/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
BitBake Recipes — Part 1

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 62/ 220

What is a Recipe? commit
root

A recipe defines:

Primarily all the tasks to fetch sources, configure, build, install and
deploy a given software component

Many components share the same build system: GNU
autotools, CMake, Meson, Python, Rust, Go...
Therefore, their tasks have a lot in common. The shared code
is handled by inheriting classes that take care of defining the
common tasks.
All the recipe has to do is set variables interpreted by these
classes.

Generic information about a package component: description,
homepage, license...

Fetch

Unpack

Configure Compile

Install

Package
Package

QA

Main tasks in a recipe

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 63/ 220

Recipe Example — flac (part 1) commit
root

meta/recipes-multimedia/flac/flac_1.5.0.bb
SUMMARY = "Free Lossless Audio Codec"
DESCRIPTION = "FLAC stands for Free Lossless Audio Codec, a lossless audio compression format."
HOMEPAGE = "https://xiph.org/flac/"
BUGTRACKER = "https://github.com/xiph/flac/issues"
SECTION = "libs"
LICENSE = "GFDL-1.3 & GPL-2.0-or-later & LGPL-2.1-or-later & BSD-3-Clause"
LIC_FILES_CHKSUM = "file://COPYING.FDL;md5=802e79e394e372d01e863e3f4058cf40 \

file://src/Makefile.am;beginline=1;endline=17;md5=9c882153132df8f3a1cb1a8ca1f2350f \
file://COPYING.GPL;md5=b234ee4d69f5fce4486a80fdaf4a4263 \
file://src/flac/main.c;beginline=1;endline=18;md5=1e826b5083ba1e028852fe7ceec6a8ad \
file://COPYING.LGPL;md5=fbc093901857fcd118f065f900982c24 \
file://COPYING.Xiph;md5=78a131b2ea50675d245d280ccc34f8b6 \
file://include/FLAC/all.h;beginline=65;endline=70;md5=39aaf5e03c7364363884c8b8ddda8eea \
"

SRC_URI = "http://downloads.xiph.org/releases/flac/${BP}.tar.xz \
file://0001-API-documentation-replace-modules.html-by-topics.htm.patch"

SRC_URI[sha256sum] = "f2c1c76592a82ffff8413ba3c4a1299b6c7ab06c734dee03fd88630485c2b920"

CVE_PRODUCT = "libflac flac"

inherit autotools gettext

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 64/ 220

https://git.yoctoproject.org/poky/tree/meta/recipes-multimedia/flac/flac_1.5.0.bb

Recipe Example — flac (part 2) commit
root

meta/recipes-multimedia/flac/flac_1.5.0.bb
EXTRA_OECONF = "--disable-oggtest \

--without-libiconv-prefix \
"

PACKAGECONFIG ??= " \
ogg \

"
PACKAGECONFIG[avx] = "--enable-avx,--disable-avx"
PACKAGECONFIG[ogg] = "--enable-ogg --with-ogg-libraries=${STAGING_LIBDIR} --with-ogg-includes=${STAGING_INCDIR},--disable-ogg,libogg"

PACKAGES += "libflac libflac++"
FILES:${PN} = "${bindir}/*"
FILES:libflac = "${libdir}/libFLAC.so.*"
FILES:libflac++ = "${libdir}/libFLAC++.so.*"

do_install:append() {
make the links in documentation relative to avoid buildpaths reproducibility problem
sed -i "s#${S}/include#${includedir}#g" ${D}${docdir}/flac/FLAC.tag ${D}${docdir}/flac/api/*.html
there is also one root path without trailing slash
sed -i "s#${S}#/#g" ${D}${docdir}/flac/api/*.html

}

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 65/ 220

https://git.yoctoproject.org/poky/tree/meta/recipes-multimedia/flac/flac_1.5.0.bb

Recipe File Path and Naming Scheme commit
root

<layer>/recipes-<type>/<name>_<version>.bb

Examples:

meta/recipes-multimedia/ffmpeg/ffmpeg_7.1.1.bb
meta/recipes-core/musl/musl_git.bb
meta/recipes-core/images/core-image-minimal.bb

A recipe can support multiple versions
Version independent files can be included:

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 66/ 220

Recipe Header Fields commit
root

Some of them correspond to package metadata fields:
SUMMARY Short description of the binary

packages, at most 72 characters
HOMEPAGE Website with more information about

the software the recipe is building
DESCRIPTION The package description used by

package managers. If not set,
DESCRIPTION takes the value of
SUMMARY.

SECTION The section in which packages
should be categorized.

BUGTRACKER URL for an upstream bug tracking
website for a recipe.

Example: meta/recipes-kernel/dtc/dtc_1.7.2.bb

SUMMARY = "Device Tree Compiler"
HOMEPAGE = "https://devicetree.org/"
DESCRIPTION = "The Device Tree Compiler is a toolchain for
working with device tree source and binary files."
SECTION = "bootloader"
LICENSE = "GPL-2.0-only | BSD-2-Clause"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 67/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-SUMMARY
https://docs.yoctoproject.org/ref-manual/variables.html#term-HOMEPAGE
https://docs.yoctoproject.org/ref-manual/variables.html#term-DESCRIPTION
https://docs.yoctoproject.org/ref-manual/variables.html#term-DESCRIPTION
https://docs.yoctoproject.org/ref-manual/variables.html#term-SUMMARY
https://docs.yoctoproject.org/ref-manual/variables.html#term-SECTION
https://docs.yoctoproject.org/ref-manual/variables.html#term-BUGTRACKER
https://git.yoctoproject.org/poky/tree/meta/recipes-kernel/dtc/dtc_1.7.2.bb

LICENSE field commit
root

An important field for license compliance, especially to know your obligations when you ship a
product.

Must be set using one of the SPDX license identifiers
(listed on https://spdx.org/licenses/).
Example:

LICENSE = "BSD-3-Clause"

A source package can have components with different licenses. Example (libgit2):

LICENSE = "GPL-2.0-with-GCC-exception & MIT & OpenSSL & BSD-3-
Clause & Zlib & ISC & LGPL-2.1-or-later & CC0-1.0 & BSD-2-Clause"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 68/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-LICENSE
https://spdx.org/licenses/

LIC_FILES_CHKSUM field commit
root

Mandatory checksum for license files (except if LICENSE = "CLOSED")
Necessary to detect a license change in the sources. If this happens, the recipe won’t
build anymore, to catch the attention of the recipe maintainer.
Example (nettle):

LICENSE = "LGPL-3.0-or-later | GPL-2.0-or-later"

LIC_FILES_CHKSUM = "file://COPYING.LESSERv3;md5=6a6a8e020838b23406c81b19c1d46df6 \
file://COPYINGv2;md5=b234ee4d69f5fce4486a80fdaf4a4263 \
file://serpent-decrypt.c;beginline=14;endline=36;md5=ca0d220bc413e1842ecc507690ce416e \
file://serpent-set-key.c;beginline=14;endline=36;md5=ca0d220bc413e1842ecc507690ce416e"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 69/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-LIC_FILES_CHKSUM

Automatic Recipe Variables commit
root

PN Originally Package Name? Confusing naming. Name part extracted from the
recipe file, without the version information. Examples: flac, cmake-native

BPN PN value with common prefixes and suffixes removed, such as nativesdk-,
-cross, -native... Examples: flac, cmake

PV Version of the recipe extracted from the recipe file name. Example: 3.31.6 for
cmake_3.31.6.bb. Overridden in recipes building from development versions
(git sources). Example:
meta/recipes-support/sass/sassc_git.bb: PV = "3.6.2".

BP Equals ${BPN}-${PV}. Mostly useful in source URLs. Examples:
meta/recipes-support/lzop/lzop_1.04.bb:
SRC_URI = "http://www.lzop.org/download/${BP}.tar.gz

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 70/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PN
https://docs.yoctoproject.org/ref-manual/variables.html#term-BPN
https://docs.yoctoproject.org/ref-manual/variables.html#term-PV
https://git.yoctoproject.org/poky/tree/meta/recipes-support/sass/sassc_git.bb
https://docs.yoctoproject.org/ref-manual/variables.html#term-BP
https://git.yoctoproject.org/poky/tree/meta/recipes-support/lzop/lzop_1.04.bb

SRC_URI: Fetching Sources (1) commit
root

Can be a fixed release archive:
meta/recipes-multimedia/flac/flac_1.5.0.bb

SRC_URI = "http://downloads.xiph.org/releases/flac/${BP}.tar.xz \
file://0001-API-documentation-replace-modules.html-by-topics.htm.patch"

SRC_URI[sha256sum] = "f2c1c76592a82ffff8413ba3c4a1299b6c7ab06c734dee03fd88630485c2b920"

The checksum is needed in case the upstream server is compromised.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 71/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://git.yoctoproject.org/poky/tree/meta/recipes-multimedia/flac/flac_1.5.0.bb

SRC_URI: Fetching Sources (2) commit
root

Can be the URL of a source repository:

meta/recipes-support/bmaptool/bmaptool_git.bb

SRC_URI = "git://github.com/yoctoproject/${BPN};branch=main;protocol=https"
SRCREV = "2ff5750b8a3e0b36a9993c20e2ea10a07bc62085"
S = "${WORKDIR}/git"
BASEVER = "3.8.0"
PV = "${BASEVER}+git"

SRCREV is necessary to know which commit to fetch
Also need to set S to point to the cloned directory
PV should be set too if it can’t be extracted from the recipe filename.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 72/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://git.yoctoproject.org/poky/tree/meta/recipes-support/bmaptool/bmaptool_git.bb
https://docs.yoctoproject.org/ref-manual/variables.html#term-SRCREV
https://docs.yoctoproject.org/ref-manual/variables.html#term-S
https://docs.yoctoproject.org/ref-manual/variables.html#term-PV

Lab — Create your first recipe commit
root

Of course for a hello world application
Create your first layer
Create your recipe using devtool
Deploy and test it on the target

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 73/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
BitBake Recipes — Part 2

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 74/ 220

Adding patches and other files commit
root

As you could see SRC_URI supports multiple fetchers:
http:// or https:// for source archives
git:// and other fetchers for source control repositories
file:// for local files, patches in particular:

meta/recipes-support/boost/boost_1.87.0.bb

SRC_URI += "file://boost-math-disable-pch-for-gcc.patch \

The files are found in the recipes themselves, typically in the BPN (recipe name)
subdirectory. We will cover the actual search path later.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 75/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-SRC_URI
https://git.yoctoproject.org/poky/tree/meta/recipes-support/boost/boost_1.87.0.bb
https://docs.yoctoproject.org/ref-manual/variables.html#term-BPN

Defining packages commit
root

Let’s look at the flac recipe again:

PACKAGES += "libflac libflac++"
FILES:${PN} = "${bindir}/*"
FILES:libflac = "${libdir}/libFLAC.so.*"
FILES:libflac++ = "${libdir}/libFLAC++.so.*"

PACKAGES: defines the list of packages to
generate.

Default value for PACKAGES:

${PN}-src ${PN}-dbg ${PN}-
staticdev ${PN}-dev ${PN}-doc ${PN}-
locale ${PACKAGE_BEFORE_PN} ${PN}

FILES: defines the contents of the packages
from the output of the install task.

Packages with no matching files are not
generated.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 76/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGES
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGES
https://docs.yoctoproject.org/ref-manual/variables.html#term-FILES

Defining packages commit
root

Let’s look at the flac recipe again:

PACKAGES += "libflac libflac++"
FILES:${PN} = "${bindir}/*"
FILES:libflac = "${libdir}/libFLAC.so.*"
FILES:libflac++ = "${libdir}/libFLAC++.so.*"

PACKAGES: defines the list of packages to
generate.

Default value for PACKAGES:

${PN}-src ${PN}-dbg ${PN}-
staticdev ${PN}-dev ${PN}-doc ${PN}-
locale ${PACKAGE_BEFORE_PN} ${PN}

FILES: defines the contents of the packages
from the output of the install task.

Packages with no matching files are not
generated.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 76/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGES
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGES
https://docs.yoctoproject.org/ref-manual/variables.html#term-FILES

Dependency Fields commit
root

Two types of dependencies
DEPENDS : list of build-time dependencies

(recipe names)
RDEPENDS : list of run-time dependencies

(package names)
These correspond to dependencies
between packages. Installing a
package will automatically require
the installation of its dependencies.

It’s rare to need to set RDEPENDS in recipes,
shared library dependencies are automatically figured
out by BitBake. Only dependencies not deducible at
compile time must be added (external programs, data
files...)

Example: meta/recipes-kernel/perf/perf.bb

DEPENDS = " \
virtual/${MLPREFIX}libc \
${MLPREFIX}elfutils \
${MLPREFIX}binutils \
bison-native flex-native xz \

"
...
RDEPENDS:${PN} += "elfutils bash"
RDEPENDS:${PN}-archive =+ "bash"
RDEPENDS:${PN}-python =+ "bash python3 python3-
modules ${@bb.utils.contains('PACKAGECONFIG', 'audit', 'audit-
python', '', d)}"
RDEPENDS:${PN}-perl =+ "bash perl perl-modules"
RDEPENDS:${PN}-tests =+ "python3 bash perl"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 77/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-DEPENDS
https://docs.yoctoproject.org/ref-manual/variables.html#term-RDEPENDS
https://docs.yoctoproject.org/ref-manual/variables.html#term-RDEPENDS
https://git.yoctoproject.org/poky/tree/meta/recipes-kernel/perf/perf.bb

Per recipe sysroots commit
root

Sysroot

Everything a C/C++ program needs to
compile and link with other software:

C headers (.h files)
Shared libraries (.so files)

Instead of having a global sysroot with everything
that was built, BitBake uses per-recipe sysroots:

During the do_populate_sysroot, each
recipe stores its headers and libraries in its
own output sysroot.

When a recipe depends on others, its
do_prepare_recipe_sysroot task fetches
the output sysroots of such recipes into its
own sysroot.

This way, success doesn’t depend on luck
(whether something was built before or not),
and missing dependencies are detected
immediately.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 78/ 220

Per recipe sysroots illustrated commit
root

D

recipe Ado_compile

do_deploy

recipe-sysroot

do_populate_sysroot

D

recipe Bdo_compile

do_deploy

recipe-sysroot

do_populate_sysroot

recipe C
DEPENDS = "recipeA recipeB"

WORKDIR

do_configure

do_compile

do_prepare
_recipe_sysroot

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 79/ 220

Lab — Create a recipe for the MyMan ASCII game commit
root

A more complicated recipe with dependencies
Figure out the license too
Multiple packages needed

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 80/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
Modifying Recipes

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 81/ 220

Most Important Yocto Law commit
root

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 82/ 220

BitBake bbappend mechanism commit
root

.bbappend files can be used to extend or override existing recipes.
To be applied, a matching .bb file must be found:

busybox_1.37.0.bbappend overrides busybox_1.37.0.bb
busybox_1.37.%.bbappend overrides all busybox_1.37.*.bb recipes
busybox_%.bbappend overrides all busybox_*.bb recipes

bbappends are typically stored in the same directory structure as the original recipe
(recipes-kernel/<recipe>/, recipes-multimedia/<recipe>/...)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 83/ 220

Giving precedence to files supplied by bbappends commit
root

Some bbappends want to add or even replace files in the original recipes
This is done by modifying the search path for files, putting the bbappend’s directories
first.
In most cases, done by (assuming the files are stored in files/):
FILESEXTRAPATHS:prepend := "${THISDIR}/files:"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 84/ 220

bbappend example commit
root

meta-raspberrypi/recipes-bsp/u-boot/u-boot_%.bbappend
FILESEXTRAPATHS:prepend := "${THISDIR}/files:"

SRC_URI:append:rpi = " \
file://fw_env.config \

"

SRC_URI:append:rpi = " file://0001-rpi-always-set-fdt_addr-with-firmware-provided-FDT-address.patch"
SRC_URI:append:raspberrypi4 = " file://maxsize.cfg"

DEPENDS:append:rpi = " u-boot-default-script"

do_install:append:rpi () {
install -d ${D}${sysconfdir}
install -m 0644 ${UNPACKDIR}/fw_env.config ${D}${sysconfdir}/fw_env.config

}

Note: :rpi and :raspberrypi4 are overrides (covered later).
They allow to apply some settings only on specific conditions.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 85/ 220

Checking bbappends commit
root

Checking all bbappends:

$ bitbake-layers show-appends

Checking one bbappend:

$ bitbake-layers show-appends
bitbake-layers show-appends psplash
...
=== Matched appended recipes ===
psplash_git.bb:
/home/mike/yocto-labs/poky/meta-poky/recipes-core/psplash/psplash_git.bbappend

Check what this particular bbappend does!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 86/ 220

Lab — Tweaking the Device Tree commit
root

Connect an I2C device to the board
Override the U-Boot recipe to apply a patch that adds
the I2C device to the board device tree.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 87/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
Virtual Packages

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 88/ 220

Need for Virtual Packages commit
root

Typically to express a generic dependency to something that
can have multiple implementations. Examples:

virtual/kernel: linux-yocto, linux-yocto-rt,
linux-yocto-tiny, linux-dummy...
virtual/bootloader: Barebox, U-Boot...
virtual/libc: Musl, GNU libc...
virtual/cross-cc: Clang, GCC...
And a few more

barebox.bb

PROVIDES +=

"virtual/bootloader"

u-boot.bb

PROVIDES +=

"virtual/bootloader"

beaglebone-yocto.conf

EXTRA_IMAGEDEPENDS +=

"virtual/bootloader"

conf/local.conf

PREFERRED_PROVIDER_virtual/bootloader = "barebox"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 89/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
Kernel Recipes

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 90/ 220

Multiple Kernel Recipes commit
root

Thanks to the virtual/kernel virtual package,
multiple options are available:

linux-yocto: the default kernel recipe in Poky

Your own kernel recipes based on kernel.bbclass

SOC or board vendor recipes,
e.g. linux-ti-staging, linux-ti-mainline...

linux-dummy: simple placeholder recipe,
for kernel built outside of Yocto.

https://kernel-recipes.org

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 91/ 220

https://kernel-recipes.org

linux-yocto commit
root

linux-yocto is a Linux kernel recipe with some additional features not found in kernel.bbclass

Integrated with Yocto special kernel tooling, kernel featuresets and config fragments
This allows to apply specific configuration settings or patches according to features on the
platform (like Bluetooth or sound support).

Several variants: linux-yocto-dev, linux-yocto-rt, linux-yocto-tiny

Managed through a special repository: https://git.yoctoproject.org/linux-yocto/
But the master branch is 5,570 commits ahead of mainline master
(from git rebase -i, on Apr. 18, 2025).
That’s difficult to maintain: most unpatched vulnerabilities are in linux-yocto.
See https://autobuilder.yocto.io/pub/non-release/patchmetrics/
My own experience: that’s not sustainable to maintain your own kernel tree with a significant
delta vs mainline. Desktop distributions are very close to mainline.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 92/ 220

https://git.yoctoproject.org/linux-yocto/
https://autobuilder.yocto.io/pub/non-release/patchmetrics/

Own Kernel Recipe with kernel.bbclass commit
root

Typically based on the stable mainline Linux kernels

Very easy to create — See presentation at OE Workshop 2025:
https://rootcommit.com/pub/conferences/2025/
oe-workshop/yocto-mainline-linux-uboot/

Alternative: use the meta-linux-mainline layer:
https://github.com/betafive/meta-linux-mainline

Need to include a defconfig configuration file for each machine
You can easily get one:
$ bitbake -c menuconfig
$ bitbake -c savedefconfig

You very quickly get the latest vulnerability fixes from the mainline
stable trees.

Find out by yourself in our practical labs!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 93/ 220

https://rootcommit.com/pub/conferences/2025/oe-workshop/yocto-mainline-linux-uboot/
https://rootcommit.com/pub/conferences/2025/oe-workshop/yocto-mainline-linux-uboot/
https://github.com/betafive/meta-linux-mainline

SoC or Board Vendor Kernel Recipe commit
root

Convenient to get early support for recent hardware.

But full of unfixed vulnerabilities (beyond the vendor’s capabilities)

But may be replaced by a mainline kernel on mature platforms
� You can keep the vendor BSP layer just for the bootloader,

firmware and specific tools!
� Consider switching, could be pretty cheap
� Will be less costly if vulnerabilities are considered
� Upgrading and access to new features will be easier

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 94/ 220

Lab — Switching to the Mainline Linux Kernel commit
root

Create a mainline kernel recipe based on
kernel.bbclass
Build the image with this kernel
Customize the kernel configuration to support the I2C
gamepad

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 95/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
devtool

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 96/ 220

devtool — Why it exists commit
root

The build system is great at generating reproducible builds from sources and metadata
However, it’s not adapted to software development.

You could try to directly work with sources under tmp/work
But this leads to all sorts of complications and the build system may erase your changes
doing that.

devtool is the cornerstone of the BitBake Extensible Software Development Kit (eSDK)
It makes it easy to build experimental code, taking care of all the tedious recipe management
tasks.
It can help new developers create new recipes
Even developers without BitBake can build applications for a given product.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 97/ 220

devtool — What you can do with it commit
root

Devtool can be used to
Create a new recipe from the sources
of a component

It guesses the recipe name
It automatically recognizes the build
system for the program
It detects the license files
It figures out some dependencies
The generated recipe needs human
review, but a big part of the job is
done

Check whether a recipe has an
update upstream
Propose patches to upgrade a recipe
to a newer upstream

Modify an existing recipe
Create an IDE configuration for your
recipes
Compile applications that you are
developing
Even without having BitBake (while
using an Extended SDK)
Deploy your applications to your
target system
Build an image with recipes under
development

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 98/ 220

devtool subcommands (1) commit
root

$ devtool --help
NOTE: Starting bitbake server...
usage: devtool [--basepath BASEPATH] [--bbpath BBPATH] [-d] [-q] [--color COLOR] [-h] <subcommand> ...

OpenEmbedded development tool

options:
--basepath BASEPATH Base directory of SDK / build directory
--bbpath BBPATH Explicitly specify the BBPATH, rather than getting it from the metadata
-d, --debug Enable debug output
-q, --quiet Print only errors
--color COLOR Colorize output (where COLOR is auto, always, never)
-h, --help show this help message and exit

subcommands:
Beginning work on a recipe:
add Add a new recipe
modify Modify the source for an existing recipe
upgrade Upgrade an existing recipe

Getting information:
status Show workspace status
search Search available recipes
latest-version Report the latest version of an existing recipe
check-upgrade-status Report upgradability for multiple (or all) recipes

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 99/ 220

devtool subcommands (2) commit
root

Working on a recipe in the workspace:
ide-sdk Setup the SDK and configure the IDE
build Build a recipe
rename Rename a recipe file in the workspace
edit-recipe Edit a recipe file
find-recipe Find a recipe file
configure-help Get help on configure script options
update-recipe Apply changes from external source tree to recipe
reset Remove a recipe from your workspace
finish Finish working on a recipe in your workspace

Testing changes on target:
deploy-target Deploy recipe output files to live target machine
undeploy-target Undeploy recipe output files in live target machine
build-image Build image including workspace recipe packages

Advanced:
create-workspace Set up workspace in an alternative location
export Export workspace into a tar archive
extract Extract the source for an existing recipe
sync Synchronize the source tree for an existing recipe
import Import exported tar archive into workspace
menuconfig Alter build-time configuration for a recipe

Use devtool <subcommand> --help to get help on a specific command

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 100/ 220

devtool subcommand help commit
root

devtool check-upgrade-status --help
NOTE: Starting bitbake server...
usage: devtool check-upgrade-status [-h] [--all] [recipe ...]

Prints a table of recipes together with versions currently provided by recipes, and latest upstream versions, when there is a later
version available

arguments:
recipe Name of the recipe to report (omit to report upgrade info for all recipes)

options:
-h, --help show this help message and exit
--all, -a Show all recipes, not just recipes needing upgrade

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 101/ 220

devtool workspace commit
root

U SB PWR IN

GPIO

M
IC

RO
SD

 C
AR

D

devtool
workspace

deploy-target

finish

devtool subcommands

add

check-upgrade-status

status

modify

upgrade

undeploy-target

build

status

build-image

resetrename

configure-help

find-recipe

https://openclipart.org/detail/299799/raspberry-pi-zero

Image credits:

your
layers

https://openclipart.org/detail/35389/tango-applications-internet

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 102/ 220

recipetool commit
root

The core machinery to work on recipes — used by devtool
Used by devtool add to create recipes
Can also be used:

to set variables in a recipe from a script
to create and update bbappends files

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 103/ 220

devtool workspace details commit
root

workspace is a layer, with priority 99 (see
conf/layer.conf)

appends: bbappends for the recipes in the
workspace

sources: copy of the recipe sources — You
can directly edit them!
Each subdirectory is a git repository

attic: backup of sources after being removed
from the workspace by devtool reset or
devtool finish

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 104/ 220

devtool command sample output commit
root

$ devtool status # Information about recipes in your workspace
hello: /home/mike/yocto-labs/poky/build/workspace/sources/hello
myman: /home/mike/yocto-labs/poky/build/workspace/sources/myman

$ devtool search i2c # Smart search for recipes (name, description, package contents...)
i2c-tools Set of i2c tools for linux
linux-libc-headers Sanitized set of kernel headers for the C library's use
linux-mainline
i2cdev i2c dev tools for Linux

$ devtool find-recipe i2c-tools # Find path to recipe
/home/mike/yocto-labs/poky/meta/recipes-devtools/i2c-tools/i2c-tools_4.3.bb

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 105/ 220

SSH host definitions commit
root

Useful for devtool deploy-target and
devtool undeploy-target

Need an SSH server (like openssh) in
the target image

Usage devtool deploy-target
<recipe> <target>

devtool deploy-target needs the
recipe to be built in the workspace

devtool undeploy-target is optional
before one more devtool
deploy-target, but useful to remove
no longer wanted files.

Entry in $HOME/.ssh/config
Host beagleplay

User root
Hostname 172.24.0.2
Port 22
StrictHostKeyChecking no
UserKnownHostsFile /dev/null

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 106/ 220

devtool add workflow commit
root

1 Create recipe in workspace from remote or
local sources:
devtool add
https://ftp.gnu.org/gnu/hello/hello-
2.12.1.tar.gz

2 Review and fix the recipe in the workspace
3 Build and test recipe on the target:

devtool build hello
devtool deploy-target hello
beagleplay

4 Copy new recipe to layer and clean workspace:
devtool finish hello
../../meta-homebrew -N (dry run)
devtool finish hello
../../meta-homebrew
devtool finish hello
../../meta-homebrew -f
(-f: force, to ignore irrelevant generated files)

Workspace

Source repository
or source release

devtool add

Layer

devtool finish

edit

build

test

devtool build

devtool deploy-target

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 107/ 220

devtool upgrade workflow commit
root

1 Check whether a new release exists upstream:

$ devtool check-upgrade-status alsa-lib
alsa-lib 1.2.13 1.2.14 Michael Opdenacker <michael@opdenacker.org>

2 Import recipe from layer and try to upgrade it:

$ devtool upgrade alsa-lib
INFO: Upgraded source extracted to /home/mike/work/yocto/poky/build/workspace/sources/alsa-lib
INFO: New recipe is /home/mike/work/yocto/poky/build/workspace/recipes/alsa-lib/alsa-lib_1.2.14.bb

3 Review, build and test new release version
4 Publish new version to layer:

$ devtool finish -f alsa-lib ../../meta-testlayer

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 108/ 220

devtool upgrade workflow — Summary commit
root

Workspace

Source repository
or source release

devtool upgrade

devtool finish

edit

build

test

Layer

Layer
(original or local)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 109/ 220

devtool modify workflow commit
root

1 Import an existing recipe into the workspace

$ devtool modify myman

2 Modify sources or recipe:
3 Build and test the sources

$ devtool build myman
$ devtool deploy-target myman beagleplay

4 Commit your changes

$ pushd workspace/sources/myman
$ git commit -as
$ popd

5 Publish your changes to a layer

$ devtool finish -f myman ../../meta-homebrew

Workspace

devtool
finish

edit

build

test

Layer

Original layer
(modified recipe)

devtool modify

Local layer
(bbappend recipe)

or

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 110/ 220

devtool — Key Takeaways � commit
root

Use devtool add to create new recipes
Very smart logic: produced recipes are almost ready
Use devtool modify and devtool upgrade to modify recipes
The workspace directory is a top priority layer
Very easy to compile applications under development (devtool build) and test them on
the target (devtool deploy-target) without having to commit your changes so that
they can be used by a formal recipe.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 111/ 220

Lab — Modify the myman recipe commit
root

Add joystick support to MyMan
Compile and test your changes without committing them
Generate a patch and update the recipe
Play the game with your joystick!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 112/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
BitBake Overrides

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 113/ 220

BitBake Overrides commit
root

Overrides are a way to make variable definitions
conditional

Example
OVERRIDES = "architecture:os:machine"
TEST = "default"
TEST:machine = "machine specific"
TEST:os = "os specific"
TEST:architecture = "architecture specific"

After parsing this, when accessing TEST:

Foreach key in OVERRIDES from right to left:
If, in the current project, key has the
same value as in the TEST:<key>
statement, then give TEST the matching
value. Exit.

If no key matched, TEST gets its default value.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 114/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-OVERRIDES

Overrides in File Search Paths commit
root

Overrides are particularly useful in the search file for files (file://)

$ bitbake-getvar -r linux-mainline OVERRIDES
pre-expansion value:
"${TARGET_OS}:${TRANSLATED_TARGET_ARCH}:pn-${PN}:layer-${FILE_LAYERNAME}:
${MACHINEOVERRIDES}:${DISTROOVERRIDES}:${CLASSOVERRIDE}
${LIBCOVERRIDE}:forcevariable"
OVERRIDES="linux:aarch64:pn-linux-mainline:layer-meta-homebrew:bsp-ti-6_12:aarch64:ti-
soc:k3:am62xx:beagleplay-ti:poky:class-target:libc-glibc:forcevariable"

bitbake-getvar -r linux-mainline FILESPATH
pre-expansion value:
"${@base_set_filesath(["${FILE_DIRNAME}/${BP}", "${FILE_DIRNAME}/${BPN}",
"${FILE_DIRNAME}/files"], d)}"
FILESPATH="/home/mike/yocto-labs/meta-homebrew/recipes-kernel/linux-mainline/linux-
mainline-6.14.2/poky:<...>/linux-mainline/poky:<...>/files/poky:<...>/linux-
mainline-6.14.2/beagleplay-ti:<...>/linux-mainline/beagleplay-
ti:<...>/files/beagleplay-ti:<...>/linux-mainline-6.14.2/am62xx:<...>/linux-
mainline/am62xx:<...>/files/am62xx:<...>/linux-mainline-6.14.2/k3:<...>/linux-
mainline/k3:<...>/files/k3:<...>/linux-mainline-6.14.2/ti-soc:<...>/linux-
mainline/ti-soc:<...>/files/ti-soc:<...>/linux-mainline-6.14.2/aarch64:<...>/linux-
mainline/aarch64:<...>/files/aarch64:<...>/linux-mainline-6.14.2/bsp-ti-
6_12:<...>/linux-mainline/bsp-ti-6_12:<...>/files/bsp-ti-6_12:<...>/linux-mainline-
6.14.2/aarch64:<...>/linux-mainline/aarch64:<...>/files/aarch64:<...>/linux-mainline-
6.14.2/:<...>/linux-mainline/:<...>/files/"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 115/ 220

Yocto overrides quiz 1 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:genericarm64 += "file://defconfig"

Value of SRC_URI?

SRC_URI = " file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 116/ 220

Yocto overrides quiz 1 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:genericarm64 += "file://defconfig"

Value of SRC_URI?

SRC_URI = " file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 116/ 220

Yocto overrides quiz 1 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:genericarm64 += "file://defconfig"

Value of SRC_URI?

SRC_URI = " file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 116/ 220

Yocto overrides quiz 2 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:genericarm64:append = " file://defconfig"

Value of SRC_URI?

SRC_URI = " file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 117/ 220

Yocto overrides quiz 2 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:genericarm64:append = " file://defconfig"

Value of SRC_URI?

SRC_URI = " file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 117/ 220

Yocto overrides quiz 2 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:genericarm64:append = " file://defconfig"

Value of SRC_URI?

SRC_URI = " file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 117/ 220

Yocto overrides quiz 3 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:append:genericarm64 = " file://defconfig"

Value of SRC_URI?

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 118/ 220

Yocto overrides quiz 3 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:append:genericarm64 = " file://defconfig"

Value of SRC_URI?

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 118/ 220

Yocto overrides quiz 3 commit
root

In a context where MACHINE = "genericarm64"

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https"
SRC_URI:append:genericarm64 = " file://defconfig"

Value of SRC_URI?

SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git;branch=linux-
6.13.y;protocol=https file://defconfig"

Why?

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 118/ 220

Overrides — What to remember commit
root

Overrides allow to specialize a variable (or even a task) for a given machine, architecture,
C library or distribution.
Use the bitbake-getvar command to track the various sources contributing to the final
value of a variable.
Overrides can be overridden using the OVERRIDES variable!
When appending a machine specific setting to a variable,
place append before the override.

Blog post: https://rootcommit.com/2025/yocto-variable-overrides-tricks/

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 119/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-OVERRIDES
https://rootcommit.com/2025/yocto-variable-overrides-tricks/

Lab — Smarter Kernel Recipe commit
root

Create a recipe supporting two kernel versions, and two
machines
Avoid code duplication
Have version and machine specific configurations

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 120/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
Task Details

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 121/ 220

do_fetch commit
root

Network access is only enabled during the do_fetch task.
This guarantees that nothing else downloads code without the supervision of the build
system.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 122/ 220

do_configure commit
root

If your component uses a configure script

You often need to pass specific options to configure

Do it with the EXTRA_OECONF variable

meta/recipes-support/sqlite/sqlite3.inc
EXTRA_OECONF = " \

--enable-shared \
--enable-threadsafe \
--disable-static-shell \

"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 123/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-EXTRA_OECONF
https://git.yoctoproject.org/poky/tree/meta/recipes-support/sqlite/sqlite3.inc

PACKAGECONFIG commit
root

The configuration options are also configurable
You can set PACKAGECONFIG entries in your recipes
Set the PACKAGECONFIG variable to the list of features you
want to enable in your recipe

PACKAGECONFIG ??= "f1 f2 f3 ..."
PACKAGECONFIG[f1] = "\

--with-f1, \
--without-f1, \
build-deps-for-f1, \
runtime-deps-for-f1, \
runtime-recommends-for-f1, \
packageconfig-conflicts-for-f1"

PACKAGECONFIG[f2] = "\
... and so on and so on ...

PACKAGECONFIG can also be modified from a local or
distribution configuration file:

PACKAGECONFIG:append:pn-recipename = " f4"

meta/recipes-support/sqlite/sqlite3.inc

PACKAGECONFIG ?= "fts4 fts5 rtree dyn_ext"
PACKAGECONFIG:class-native ?= "fts4 fts5 rtree dyn_ext"

PACKAGECONFIG[editline] = "--enable-editline,--disable-editline,libedit"
PACKAGECONFIG[readline] = "--enable-readline,--disable-readline,readline ncurses"
PACKAGECONFIG[fts3] = "--enable-fts3,--disable-fts3"
PACKAGECONFIG[fts4] = "--enable-fts4,--disable-fts4"
PACKAGECONFIG[fts5] = "--enable-fts5,--disable-fts5"
PACKAGECONFIG[rtree] = "--enable-rtree,--disable-rtree"
PACKAGECONFIG[session] = "--enable-session,--disable-session"
PACKAGECONFIG[dyn_ext] = "--enable-dynamic-extensions,--disable-dynamic-extensions"
PACKAGECONFIG[zlib] = ",,zlib"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 124/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGECONFIG
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGECONFIG
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGECONFIG
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGECONFIG

do_compile commit
root

Some applications with simple Makefiles hardcode some variables, such as CC, CFLAGS and
LDFLAGS

This bypasses the settings from the build system, and prevents from cross-compiling

Workaround: invoke make with the -e option, so that variables from the environment take
precedence.

meta/recipes-extended/ed/ed_1.21.1.bb
EXTRA_OEMAKE = "-e MAKEFLAGS="

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 125/ 220

https://git.yoctoproject.org/poky/tree/meta/recipes-extended/ed/ed_1.21.1.bb

do_install commit
root

Installing files is normally taken care of by the classes you’re using (autotools, cmake...)

If files must be installed ”manually”, you have to create the target directories, because they are
recipe specific.

meta/recipes-devtools/mmc/mmc-utils_git.bb
do_install() {

install -d ${D}${bindir}
install -m 0755 mmc ${D}${bindir}

}

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 126/ 220

https://git.yoctoproject.org/poky/tree/meta/recipes-devtools/mmc/mmc-utils_git.bb

do_package_qa commit
root

This task runs many sanity checks on the generated packages

Whole list of checks on
https://docs.yoctoproject.org/ref-manual/classes.html#ref-classes-insane

Examples
buildpaths: detect paths on the build host
already-stripped: detect executables stripped before the build system gets a chance to
make a -dbg package with the unstripped version
staticdev: detect static library files (*.a) in non -staticdev packages.

Sometimes, some of these checks are irrelevant and need to be skipped (per package definition):

meta/recipes-connectivity/openssl/openssl_3.4.1.bb
INSANE_SKIP:${PN} = "already-stripped"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 127/ 220

https://docs.yoctoproject.org/ref-manual/classes.html#ref-classes-insane
https://git.yoctoproject.org/poky/tree/meta/recipes-connectivity/openssl/openssl_3.4.1.bb

Yocto Project and OpenEmbedded Training Course commit
root

Recipes
Debugging Recipes

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 128/ 220

Useful variables commit
root

S: directory containing the component sources
T: directory where BitBake stores temporary files for a recipe

Contains scripts created to run tasks (e.g. run.do_configure).
You could run them directly!
Contains the log files of such tasks (e.g. log.do_configure)

B: directory where the recipe is built. Usually equal to ${S}.
FILE: exact recipe file used to build the recipe

� Don’t try to remember the internal paths used by BitBake. Use bitbake-getvar.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 129/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-S
https://docs.yoctoproject.org/ref-manual/variables.html#term-T
https://docs.yoctoproject.org/ref-manual/variables.html#term-B
https://docs.yoctoproject.org/ref-manual/variables.html#term-FILE

Other useful features for debugging commit
root

devshell task:
Sets all the variables so that you can manually run commands such as configure and make.
See https://docs.yoctoproject.org/dev-manual/development-shell.html

$ bitbake -c devshell myman

pydevshell task:
Allows to execute Python functions as if you were in the BitBake environment. Great for checking Python code,
access variables, run tasks manually.
See https://docs.yoctoproject.org/dev-manual/python-development-shell.html

$ bitbake -c pydevshell myman

buildhistory class:
Records information about the contents of each package and image and stores it into a local Git repository. Useful
for tracking unexpected regressions. See https://docs.yoctoproject.org/dev-manual/build-quality.html
Set this in conf/local.conf:
INHERIT += "buildhistory"
BUILDHISTORY_COMMIT = "1"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 130/ 220

https://docs.yoctoproject.org/dev-manual/development-shell.html
https://docs.yoctoproject.org/dev-manual/python-development-shell.html
https://docs.yoctoproject.org/dev-manual/build-quality.html

Yocto Project and OpenEmbedded Training Course commit
root

Layers

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 131/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Layers
BSP Layers

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 132/ 220

Purpose of BSP Layers commit
root

Goal: support hardware specific features
Define machines: conf/machine/*.conf
Provide Linux kernel recipes
Provide bootloader recipes: U-Boot, Barebox, Grub...
(recipes-bsp)
Provide recipes to build firmware (recipes-bsp)
Plus other customizations and configurations to standard
software (usually bbappends)

Often contains bsp in the layer name.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 133/ 220

U-Boot Recipes commit
root

Unlike Linux kernel recipes, there is no special class for U-Boot recipes yet
You have to include includes from the standard U-Boot recipe
No support for defconfig configuration either

Need to provide a patch to implement a specific configuration
To be chosen via the UBOOT_MACHINE setting

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 134/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-UBOOT_MACHINE

Mainline U-Boot Recipe Example commit
root

u-boot-mainline_2025.01.bb
require recipes-bsp/u-boot/u-boot-common.inc
require recipes-bsp/u-boot/u-boot.inc
PROVIDES = "virtual/bootloader"
RPROVIDES:${PN} = "u-boot"

U-Boot 2025.01
SRCREV = "6d41f0a39d6423c8e57e92ebbe9f8c0333a63f72"
UBOOT_MACHINE = "custom_defconfig"

SRC_URI:append:genericarm64 = "file://add-custom-defconfig.patch"
SRC_URI:append:beaglebone-yocto = "file://add-custom-defconfig.patch"

DEPENDS += "bc-native dtc-native gnutls-native python3-pyelftools-native"

Source: Presentation at OE Workshop 2025 — https://rootcommit.com/pub/conferences/2025/oe-workshop/

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 135/ 220

https://rootcommit.com/pub/conferences/2025/oe-workshop/

Difference between include and require commit
root

Both are used to ”include” other files
But only require aborts with an error when the file to include is not found.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 136/ 220

Example Machine Definition (1) commit
root

conf/machine/beagleboard.conf — Part 1
#@TYPE: Machine
#@NAME: Beagleboard machine

PREFERRED_PROVIDER_virtual/xserver ?= "xserver-xorg"
MACHINE_EXTRA_RRECOMMENDS = "kernel-modules"
EXTRA_IMAGEDEPENDS += "virtual/bootloader"

DEFAULTTUNE ?= "cortexa8hf-neon"
include conf/machine/include/arm/armv7a/tune-cortexa8.inc

IMAGE_FSTYPES += "tar.bz2 jffs2 wic wic.bmap"
WKS_FILE ?= "beagleboard.wks"
MACHINE_ESSENTIAL_EXTRA_RDEPENDS += "kernel-image kernel-devicetree"
do_image_wic[depends] += "mtools-native:do_populate_sysroot dosfstools-native:do_populate_sysroot virtual/bootloader:do_deploy"

SERIAL_CONSOLES ?= "115200;ttyS2"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 137/ 220

Example Machine Definition (2) commit
root

conf/machine/beagleboard.conf — Part 2
PREFERRED_PROVIDER_virtual/kernel ?= "linux-mainline"
PREFERRED_VERSION_linux-mainline ?= "6.13.11"
KERNEL_IMAGETYPE = "zImage"
KERNEL_DEVICETREE = "ti/omap/omap3-beagle.dtb"

PREFERRED_PROVIDER_virtual/bootloader = "u-boot-mainline"
PREFERRED_VERSION_u-boot-mainline = "2024.07"
SPL_BINARY = "MLO"
UBOOT_SUFFIX = "img"

DTB_FILES = "omap3-beagle.dtb"
IMAGE_BOOT_FILES ?= "u-boot.${UBOOT_SUFFIX} ${SPL_BINARY} ${KERNEL_IMAGETYPE} ${DTB_FILES}"

MACHINE_FEATURES = "usbgadget usbhost vfat alsa"

Source: https://www.youtube.com/shorts/w-N3yh5U8rw (Yocto on BeagleBoard)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 138/ 220

https://www.youtube.com/shorts/w-N3yh5U8rw

Machine definitions — Key takeaways commit
root

Place for some settings otherwise in
conf/local.conf:

PREFERRED_PROVIDER
PREFERRED_VERSION
Device tree and other bootloader settings

Other settings:
Disk image layout: WKS_FILE
SERIAL_CONSOLES
Toolchain settings: DEFAULTTUNE and
includes
MACHINE_FEATURES (see next page)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 139/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PREFERRED_PROVIDER
https://docs.yoctoproject.org/ref-manual/variables.html#term-PREFERRED_VERSION
https://docs.yoctoproject.org/ref-manual/variables.html#term-WKS_FILE
https://docs.yoctoproject.org/ref-manual/variables.html#term-SERIAL_CONSOLES
https://docs.yoctoproject.org/ref-manual/variables.html#term-DEFAULTTUNE
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES

MACHINE_FEATURES commit
root

List of hardware features supported by the machine:
alsa, bluetooth, usbhost, keyboard, screen...
Example for beagleplay-ti:
MACHINE_FEATURES="apm usbgadget usbhost vfat ext2 alsa pci efi screen gpu"
They can be used by recipes

To control kernel configuration options
To define packages to install to an image:

meta/recipes-core/packagegroups/packagegroup-base.bb
${@bb.utils.contains("MACHINE_FEATURES", "alsa", "packagegroup-base-alsa", "", d)} \

To define configuration settings or dependencies:

meta/recipes-sato/matchbox-panel-2/matchbox-panel-2_2.12.bb
EXTRA_OECONF += " ${@bb.utils.contains("MACHINE_FEATURES", "acpi", "--with-battery=acpi", "",d)}"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 140/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES
https://git.yoctoproject.org/poky/tree/meta/recipes-core/packagegroups/packagegroup-base.bb
https://git.yoctoproject.org/poky/tree/meta/recipes-sato/matchbox-panel-2/matchbox-panel-2_2.12.bb

Create Your Own MACHINE commit
root

Don’t hesitate to create your own MACHINE
To eliminate some settings in conf/local.conf
You can include some other machine definitions
or their includes in your SOC vendor BSP layer.
Advice: easier not to redefine existing machine names.

Image credits:
https://openclipart.org/detail/183040/
coffee-machine

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 141/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE
https://openclipart.org/detail/183040/coffee-machine
https://openclipart.org/detail/183040/coffee-machine

BSP Layers: Key Takeaways � commit
root

For all hardware related features
Create yours reusing the SoC vendor BSP layer
Define machines in conf/machine/<machine>.conf
Define kernel, bootloader, and firmware recipes
Set preferred kernel and bootloader versions
Include all hardware specific customizations of normal recipes

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 142/ 220

Lab — Create a New Machine commit
root

Create a new beagleplay-gaming machine
Remove settings from codeconf/local.conf

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 143/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Layers
Images

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 144/ 220

Role of an Image commit
root

An image is supposed to describe which packages should be installed on the target root
filesystem.

Regardless of the MACHINE setting
Regardless of the distribution choices (C library, init manager...)
It should also describe the supported output formats: tar archive(s), disk image(s)...
As well as the image size (including free space)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 145/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE

Yocto Project and OpenEmbedded Training Course commit
root

Layers
Image Recipes

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 146/ 220

Getting Image Contents commit
root

bitbake-getvar doesn’t help here,
because images are defined by packagegroups (explained soon):

$ bitbake-getvar -r core-image-minimal IMAGE_INSTALL
pre-expansion value:
"packagegroup-core-boot ${CORE_IMAGE_EXTRA_INSTALL} u-boot"
IMAGE_INSTALL="packagegroup-core-boot u-boot"

The best way is to look at the contents of the image manifest in
tmp/deploy/images/<machine>/<image>-
<machine>.rootfs.manifest

Manifest for core-image-minimal +
u-boot on release Styhead

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 147/ 220

Standard Images commit
root

Image sizes given for Styhead with the genericarm64 machine
core-image-minimal: a minimal image just allowing to boot a machine. Mainly kernel (without modules),
BusyBox and a few other utilities (62 MB, 42 packages)
core-image-minimal-dev: + development packages (headers) to develop applications (84 MB, 83 packages)
core-image-minimal-initramfs: - kernel + udev and utilities for use in an initramfs (33 MB, 38 packages)
core-image-base: minimal base + kernel modules + associated userspace tools (172 MB, 876 packages)

Additional images, mainly for testing:
core-image-weston: basic Wayland image with basic graphical applications (369 MB, 1046 packages)
core-image-x11: basic X11 image (364 MB, 1066 packages)
core-image-sato: outdated Sato multimedia desktop image, but useful for testing (448 MB, 1504 packages)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 148/ 220

Sato Desktop Screenshot commit
root

Definitely useful only for testing

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 149/ 220

Images: Useful Variables commit
root

Images are defined as regular recipes. Example: meta/recipes-core/images/core-image-minimal.bb

IMAGE_BASENAME: base name of the image output
file. Defaults to ${PN}.
IMAGE_INSTALL: list of packages and package
groups to include in the image
IMAGE_INSTALL += "openssh"

IMAGE_FEATURES: list of features features to
include in an image (see next page)
IMAGE_FEATURES += "package-management"

IMAGE_LINGUAS: list of locales to install in an
image
IMAGE_LINGUAS = "pt-br de-de"

IMAGE_ROOTFS_SIZE: size in KB for the generated
image. See also IMAGE_ROOTFS_EXTRA_SPACE and
IMAGE_OVERHEAD_FACTOR
IMAGE_ROOTFS_SIZE = "262144"

IMAGE_FSTYPES: Output image file formats
From conf/machine/beaglebone-yocto.conf
IMAGE_FSTYPES += "tar.bz2 jffs2 wic wic.bmap"

EXTRA_IMAGEDEPENDS: list of recipes not meant
for installing into the root filesystem. Typical
case: bootloader.
From meta/conf/machine/qemuriscv64.conf
EXTRA_IMAGEDEPENDS += "u-boot"

IMAGE_POSTPROCESS_COMMAND: list of functions to
call after generating the image
IMAGE_POSTPROCESS_COMMAND +=

"buildhistory_get_imageinfo"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 150/ 220

https://git.yoctoproject.org/poky/tree/meta/recipes-core/images/core-image-minimal.bb
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_BASENAME
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_LINGUAS
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_ROOTFS_SIZE
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_ROOTFS_EXTRA_SPACE
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_OVERHEAD_FACTOR
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FSTYPES
https://docs.yoctoproject.org/ref-manual/variables.html#term-EXTRA_IMAGEDEPENDS
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_POSTPROCESS_COMMAND

Image Features commit
root

Correspond to features impacting the creation of the image, or the way some recipes are built.

allow-empty-password: allows Drop bear and
OpenSSH to accept logins with an empty
password
allow-root-login: allows Dropbear and
OpenSSH to accept root logins
empty-root-password: speaks for itself
post-install-logging: logs the execution of
package post install scripts
debug-tweaks: shortcut for the above features.
Removed in Walnascar (5.2), to avoid the risk to
keep it in production.

dbg-pkgs: installs debug symbol packages
package-management: installs package
management tools and database. See
PACKAGE_CLASSES

read-only-rootfs: sets up a read-only root
filesystem
splash: enable a splashscreen during boot
overlayfs-etc: configures the /etc directory to
be in overlayfs (read-only root filesystem)

To be set through IMAGE_FEATURES (image recipes) or through EXTRA_IMAGE_FEATURES (configuration files)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 151/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_CLASSES
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-EXTRA_IMAGE_FEATURES

Image Recipe Example commit
root

meta/recipes-core/images/core-image-minimal.bb (Apr. 2025)
SUMMARY = "A small image just capable of allowing a device to boot."

IMAGE_INSTALL = "packagegroup-core-boot ${CORE_IMAGE_EXTRA_INSTALL}"

IMAGE_LINGUAS = " "

LICENSE = "MIT"

inherit core-image

IMAGE_ROOTFS_SIZE ?= "8192"
IMAGE_ROOTFS_EXTRA_SPACE:append = "${@bb.utils.contains("DISTRO_FEATURES", "systemd", " + 4096",
"", d)}"

LICENSE is optional in image recipes.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 152/ 220

https://git.yoctoproject.org/poky/tree/meta/recipes-core/images/core-image-minimal.bb
https://docs.yoctoproject.org/ref-manual/variables.html#term-LICENSE

Yocto Project and OpenEmbedded Training Course commit
root

Layers
Package Groups

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 153/ 220

Package Groups commit
root

Package Groups are also regular recipes (LICENSE optional)
They get package installed by setting RDEPENDS and RRECOMMENDS

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 154/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-LICENSE
https://docs.yoctoproject.org/ref-manual/variables.html#term-RDEPENDS
https://docs.yoctoproject.org/ref-manual/variables.html#term-RRECOMMENDS

Package Group Example commit
root

meta/recipes-core/packagegroups/packagegroup-core-boot.bb (Apr. 2025)
SUMMARY = "Minimal boot requirements"
DESCRIPTION = "The minimal set of packages required to boot the system"
PACKAGE_ARCH = "${MACHINE_ARCH}"

inherit packagegroup

EFI_PROVIDER ??= "grub-efi"
SYSVINIT_SCRIPTS = "${@bb.utils.contains('MACHINE_FEATURES', 'rtc', '${VIRTUAL-RUNTIME_base-utils-hwclock}', '', d)} \

modutils-initscripts \
${VIRTUAL-RUNTIME_initscripts} \
"

RDEPENDS:${PN} = "\
base-files \
base-passwd \
${VIRTUAL-RUNTIME_base-utils} \
${@bb.utils.contains("DISTRO_FEATURES", "sysvinit", "${SYSVINIT_SCRIPTS}", "", d)} \
${@bb.utils.contains("MACHINE_FEATURES", "keyboard", "${VIRTUAL-RUNTIME_keymaps}", "", d)} \
${@bb.utils.contains("MACHINE_FEATURES", "efi", "${EFI_PROVIDER} kernel", "", d)} \
netbase \
${VIRTUAL-RUNTIME_login_manager} \
${VIRTUAL-RUNTIME_init_manager} \
${VIRTUAL-RUNTIME_dev_manager} \
${VIRTUAL-RUNTIME_update-alternatives} \
${MACHINE_ESSENTIAL_EXTRA_RDEPENDS}"

...

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 155/ 220

https://git.yoctoproject.org/poky/tree/meta/recipes-core/packagegroups/packagegroup-core-boot.bb

Yocto Project and OpenEmbedded Training Course commit
root

Layers
Making Disk Images

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 156/ 220

.wks files commit
root

Disk images are typically created by a tool called Wic
They are generated from specifications in a .wks or .wks.in file

meta-ti-bsp/wic/sdimage-2part.wks
short-description: Create SD card image with 2 partitions
long-description: Creates a partitioned SD card image for TI platforms.
Boot files are located in the first vfat partition with extra reserved space.

part --source bootimg-partition --fstype=vfat --label boot --active --align 1024 --use-uuid --fixed-
size 128M
part / --source rootfs --fstype=ext4 --label root --align 1024 --use-uuid

Use WKS_FILE to select such a file:

meta-ti-bsp/conf/machine/include/k3.inc

WKS_FILE ?= "${@bb.utils.contains("MACHINE_FEATURES", "efi", "sdimage-2part-efi.wks.in", "sdimage-
2part.wks", d)}"

You can override WKS_FILE in your own layer.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 157/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-WKS_FILE
https://docs.yoctoproject.org/ref-manual/variables.html#term-WKS_FILE

Images — Key Takeaways � commit
root

Image contents are sets of packages
Specified by IMAGE_INSTALL and package groups
Images and package groups are defined by regular recipes
IMAGE_FEATURES alters the creation of the image (like allowing for empty root password),
and the way some recipes are built.
You can create your own partition scheme through a custom WKS_FILE

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 158/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-WKS_FILE

Lab — Create your own image commit
root

Create a new core-image-games image
Move some settings from conf/local.conf
Add space to your root partition

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 159/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Layers
Distro Layers

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 160/ 220

Purpose of Distro Layers commit
root

Typically for everything that neither belongs in a BSP layer nor in an image recipe
The choice of the C library: Glibc, Musl
The choice of the Init Manager: SystemV Init, systemd, BusyBox init...
The choice of Package management system: rpm, deb, ipk
The choice of display server: X11, Wayland...
Anything that can implement a distribution policy: splash screen, init scripts, image
signing keys and scripts, some preferred versions, security settings, SBoM generation, QA
checks, exclusion of GPLv3 components...

A distro should work whatever the machine and image contents.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 161/ 220

How to set the distro? commit
root

The distro is meant to be set via the DISTRO variable in conf/local.conf
There needs to be a matching conf/distro/<DISTRO>.conf file in a layer
If DISTRO is "", then meta/conf/distro/defaultsetup.conf is used.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 162/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO
https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO
https://git.yoctoproject.org/poky/tree/meta/conf/distro/defaultsetup.conf

The Poky distro commit
root

poky: default distro with SystemV Init and RPM packages

poky-altcfg: distro with systemd and IPK packages

poky-tiny: distro with SystemV Init, IPK packages, -Os optimizations and some features and
packages disabled

WARNING: Poky is a reference Yocto Project distribution that should be used for
testing and development purposes only. It is recommended that you create your
own distribution for production use.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 163/ 220

What’s wrong with Poky in production? commit
root

− Poky is made to test a wide variety of features and packages.
In an embedded system, you usually want to reduce the footprint and attack surface.

− Poky has many debug, development and test features enabled. It basically enabled
everything!

− Poky is not secure by default, doesn’t have a hardened kernel, doesn’t use a secure init
manager, runs services as root (for example lighttpd). However, it includes hardened
compiling options.

− Poky still uses the outdated SysV Init manager.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 164/ 220

DISTRO_FEATURES commit
root

Similar to MACHINE_FEATURES and IMAGE_FEATURES, impacting the way components are
configured

Some examples: alsa, bluetooth, ipv4, ipv6, pulseaudio, nfs, wayland, x11...
There is some overlap with MACHINE_FEATURES and IMAGE_FEATURES:

bluetooth is in DISTRO_FEATURES, causing applications to be configured with bluez library
support
bluetooth is also in MACHINE_FEATURES, meaning the kernel should have Bluetooth support
and the Bluetooth modules need to be included too.
You could have a machine that supports Bluetooth but a distribution choosing not to enable
it.
See COMBINED_FEATURES for specifying features both in DISTRO_FEATURES and in
MACHINE_FEATURES

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 165/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-COMBINED_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-MACHINE_FEATURES

Toolchain related options commit
root

TCLIBC: allows to choose the C library: glibc (default), musl, newlib or baremetal.
Not all packages support options other than glibc.
TCMODE: can be used to use an external toolchain, but this reduces reproducibility and
traceability
TC means ”ToolChain”!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 166/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-TCLIBC
https://docs.yoctoproject.org/ref-manual/variables.html#term-TCMODE

Init Manager commit
root

INIT_MANAGER: important distribution setting. Several choices:
sysvinit: traditional init system based on scripts but outdated. Poky’s default.
systemd: modern init system with Udev for hardware event management, powerful
security capabilities and other features. Starts more services by default (impact on
boot-time unless tweaked).
mdev-busybox: BusyBox init system with mdev for hardware event management.
Lightweight and often sufficient for simple and low-resource systems.

See https://docs.yoctoproject.org/dev-manual/init-manager.html#init-manager

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 167/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-INIT_MANAGER
https://docs.yoctoproject.org/dev-manual/init-manager.html#init-manager

Create your own distribution commit
root

Once again, Poky is not recommended in
production

Create a new one in your layer:
conf/distro/<distro>.conf

Can use the TEMPLATECONF variable to
provide custom templates for
conf/local.conf and conf/bblayers.conf

Then, set the same DISTRO setting in
conf/local.conf:

DISTRO = "geniux"

https://github.com/carlesfernandez/meta-gnss-sdr/blob/master/conf/
distro/geniux.conf

DISTRO = "geniux"

DISTRO_NAME = "Geniux"
DISTRO_CODENAME = "master"
DISTRO_VERSION = "${DISTRO_CODENAME}-25.04.${GENIUX_CONF_VERSION}"

SDK_VENDOR = "-geniuxsdk"
SDK_VERSION = "${DISTRO_VERSION}"
MAINTAINER = "cfernandez@cttc.es"

TARGET_VENDOR = "-geniux"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 168/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-TEMPLATECONF
https://docs.yoctoproject.org/ref-manual/variables.html#term-DISTRO
https://github.com/carlesfernandez/meta-gnss-sdr/blob/master/conf/distro/geniux.conf
https://github.com/carlesfernandez/meta-gnss-sdr/blob/master/conf/distro/geniux.conf

Distro include files commit
root

Your distro can include standard include files:
Contents of meta/conf/distro/include
cve-extra-exclusions.inc lto.inc tclibc-musl.inc
default-distrovars.inc maintainers.inc tclibc-newlib.inc
default-providers.inc no-gplv3.inc tclibc-picolibc.inc
default-versions.inc no-static-libs.inc tcmode-default.inc
distro_alias.inc ptest-packagelists.inc time64.inc
init-manager-mdev-busybox.inc rust_security_flags.inc uninative-flags.inc
init-manager-none.inc security_flags.inc yocto-space-optimize.inc
init-manager-systemd.inc tclibc-baremetal.inc yocto-uninative.inc
init-manager-sysvinit.inc tclibc-glibc.inc

See meta/conf/distro/defaultsetup.conf

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 169/ 220

https://git.yoctoproject.org/poky/tree/meta/conf/distro/include
https://git.yoctoproject.org/poky/tree/meta/conf/distro/defaultsetup.conf

Distro layers: key takeaways � commit
root

The distribution sets policies for how your distribution starts, what C library it uses, the
features it supports, how packages are generated...
Poky is meant for Yocto testing, not for production

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 170/ 220

Lab — Create your own distro commit
root

Create new distro — Ditch Poky
Try BusyBox init
Switch to systemd
Change login message

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 171/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Layers
BSP vs Distro vs Image

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 172/ 220

Where to go for...

BSP Layers

- Machine definitions
- Kernel recipes and config
- Bootloader recipes
- Firmware recipes
- Custom Hardware utilities
- Instruction set definitions
- Machine features
(supported HW drivers)
- Machine specific bbappends

Images

- List of packages
- Package groups
- Image size and free space
- Partitioning scheme
- Image features
(root login...)

Distro Layers
- Package policies
- Toolchain
- C standard library
- Init manager
- Distro features
(ipv6, sound server...)

Suggestion: create https://OpenLayerMap.org

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 173/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Yocto in Projects

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 174/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Yocto in Projects
Binary Distributions

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 175/ 220

Yocto and Binary Distributions commit
root

Binary distributions:

Like standard GNU/Linux distributions on
desktop and servers

Can be updated through packages. In most
cases, no need to reboot

Don’t need a full reflash

Packages can be added and removed too

Support preserving modified configuration files
across updates

Yocto supports generating binary distributions:

But not enabled by default

Not all built packages are installed in the
image

Supported package formats: rpm, deb and ipk

Can generate package feeds

Best known OE/Yocto built distro: Angstrom
(defunct)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 176/ 220

Available Package Formats commit
root

rpm
Users: Fedora, Red Hat,
Poky (by default)
Low level tool: rpm
Front-end: yum
Test:

1.3 GB of packages
45 MB .tar.bz2 image

deb
Users: Ubuntu, Debian,
Poky (non-default)
Low-level tool: dpkg
Front-end: apt
Test:

1.1 GB of packages
27 MB .tar.bz2 image

ipk
Users: OpenWRT, Poky
(non-default)
Simplified version of deb
Maintained by Yocto
Only one tool: opkg
Test:

1.8 GB of packages
19 MB .tar.bz2 image

Test: core-image-minimal, poky master (Sep. 11, 2024), with package management

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 177/ 220

Why are ipk packages bigger than deb ones? commit
root

deb package contents are compressed with xz
ipk package contents are compressed with zstd
zstd compresses less than xz, but is much less CPU intensive.
Much better for low-end CPUs.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 178/ 220

Choosing the package format commit
root

Set PACKAGE_CLASSES in conf/local.conf or in distro.conf:

PACKAGE_CLASSES ?= "package_deb"
PACKAGE_CLASSES ?= "package_deb package_ipk package_rpm"

Though packages are generated for all PACKAGE_CLASSES, only the first setting is actually
used to generate the image.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 179/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_CLASSES
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_CLASSES

Enabling package management in image commit
root

Though OpenEmbedded uses packages to install applications and other files, by default
there is no package manager on Poky’s core-image-minimal image.
If you want to be able to use package management at run time:

Add to conf/local.conf:
EXTRA_IMAGE_FEATURES += "package-management"
Or to an image recipe:
IMAGE_FEATURES += "package-management"

See EXTRA_IMAGE_FEATURES and IMAGE_FEATURES.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 180/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-EXTRA_IMAGE_FEATURES
https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_FEATURES

Create a package feed commit
root

� Package feeds are created automatically in tmp/deploy/[rpm|deb|ipk]
when you build packages

� The package indexes (catalogs of packages and versions) are not created by default.
You need to create them with:
$ bitbake package-index

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 181/ 220

Publish a package feed commit
root

Your package feed contents are in tmp/deploy/<format>
You may copy that to a directory shared by a web server
For development and testing, the quickest way is to run a local server from the command
line. No need to set up an Apache server!
$ cd tmp/deploy/ipk/
$ python3 -m http.server

This starts an HTTP server on local TCP port 8000

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 182/ 220

Use a package feed commit
root

You need to configure the package
manager in the image to let it know
the HTTP(S) server details.

Set the PACKAGE_FEED_URIS,
PACKAGE_FEED_BASE_PATHS, and
PACKAGE_FEED_ARCHS variables in
conf/local.conf

Example:
PACKAGE_FEED_URIS = "https://example.com/packagerepos/release \

https://example.com/packagerepos/updates"
PACKAGE_FEED_BASE_PATHS = "rpm rpm-dev"
PACKAGE_FEED_ARCHS = "all core2-64"

Given these settings, the resulting package feeds are as
follows:
https://example.com/packagerepos/release/rpm/all
https://example.com/packagerepos/release/rpm/core2-64
https://example.com/packagerepos/release/rpm-dev/all
https://example.com/packagerepos/release/rpm-dev/core2-64
https://example.com/packagerepos/updates/rpm/all
https://example.com/packagerepos/updates/rpm/core2-64
https://example.com/packagerepos/updates/rpm-dev/all
https://example.com/packagerepos/updates/rpm-dev/core2-64

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 183/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_FEED_URIS
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_FEED_BASE_PATHS
https://docs.yoctoproject.org/ref-manual/variables.html#term-PACKAGE_FEED_ARCHS

Image and package feed contents commit
root

What goes into the image?
The list of packages defined by
IMAGE_INSTALL and the image that you
build:
$ bitbake core-image-minimal

What goes into the package feed?
The list of packages that you build:
$ bitbake hello
$ bitbake world
...

bitbake <package>
bitbake <image>
bitbake world

IMAGE_INSTALL

All packages

Image

http
server

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 184/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-IMAGE_INSTALL

Package managers: quick reference commit
root

rpm

Configuration:

/etc/yum.repos.d/

Commands:

dnf update
dnf install
dnf remove
dnf upgrade

deb

Configuration:

/etc/apt

Commands:

apt update
apt list --upgradable
apt upgrade

ipk

Configuration:

/etc/opkg

Commands:

opkg update
opkg install <package>
opkg remove <package>
opkg upgrade –noaction
opkg upgrade

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 185/ 220

PR value commit
root

PR = Package Revision
Only needed when applying package updates
Example:

Currently installed package: myapp-1.0-r0
Available bugfix update: myapp-1.0-r1

This makes sure that the update prevails and gets installed. Not
necessary when there is a version number increase.

1.0-r0
PV-rPR

https://docs.yoctoproject.org/ref-manual/variables.html#term-PR

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 186/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-PR
https://docs.yoctoproject.org/ref-manual/variables.html#term-PR

PR server commit
root

A PR server is a process which increases the PR
(revision) value when a new package output hash is
found. Therefore, also needs a Hash Equivalence Server
to work properly.

Can either be a local server:
PRSERV_HOST = "localhost:0"

Or a server shared by multiple builders:
PRSERV_HOST = "192.168.1.17:8585"

� Hash Equivalence Server:
Detects when two instances of a task how
different input hash but the same output hash.
This could come from differences in comments
or in other types of unused code.
This equivalence avoids propagating changes all
the way down the dependency chain.

https://docs.yoctoproject.org/dev-manual/packages.html#working-with-a-pr-service

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 187/ 220

https://docs.yoctoproject.org/dev-manual/packages.html#working-with-a-pr-service

Binary Distributions — Key Takeaways � commit
root

BitBake / OE support generating binary distributions
However, Poky images don’t include package management by default: not possible to add
and remove packages.
Difference between built packages and those which are added to an image
Enable package management with:
IMAGE_FEATURES += "package-management"

Also need to generate package indexes for built packages:
$ bitbake package-index

Then start an HTTP server to serve files in tmp/deploy/[rpm|deb|ipk]

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 188/ 220

Lab — Setting up a binary distribution commit
root

Build a new package
Enable package management
Remove a package
Generate a package feed
Start an HTTP server
Install a new package

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 189/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Yocto in Projects
Addressing Vulnerabilities

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 190/ 220

Vulnerability landscape commit
root

Constraints

Don’t want to leave a product with unfixed
vulnerabilities. Could be very costly for your
customers and your reputation.

Embedded device makers have a tendency to
”ship and run”.

Regulations (like the CRA in the EU) are going
to make it mandatory to have proper security
policies and vulnerability management.

A bumpy ride

Vulnerability databases are originally
maintained by US government bodies

However, the quality of service has severely
degraded since 2024 (stalled updates) for
multiple reasons, especially budget cuts (in
particular in 2025)

The Yocto Project is doing its best to
maintain working tools in this unstable
environment.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 191/ 220

How vulnerability checking works commit
root

Vulnerability
database

CVE_A
CVE_B
CVE_C
...

Security
researchers

cve-check.bbclass

recipe

update database

recipe has a patch?

impacted by CVE
(comparing versions)?

yes

no

found vulnerability

report

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 192/ 220

Enable vulnerability checking commit
root

Add this to conf/local.conf:
INHERIT += "cve-check"

This will add a CVE task to the recipes you’re building
You may also want to ignore CVEs that are irrelevant to Poky and OE-core:
include conf/distro/include/cve-extra-exclusions.inc

Then, bitbake your regular image,
and the checks will be run (without running the other tasks if not necessary)
You can also run checks on specific recipes:
$ bitbake -c cve_check linux-yocto

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 193/ 220

Exploiting vulnerability report commit
root

Simple command:
$ grep Unpatched /home/mike/work/yocto/poky/build/tmp/log/cve/cve-summary.json | wc
30

You can also parse the JSON report with your own tooling
Unfortunately, don’t know good / standard tools to browse such vulnerabilities

VulnScout (https://github.com/savoirfairelinux/vulnscout) is promising but had
issues making it work properly (ongoing)
No tools recommended in Yocto’s documentation yet

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 194/ 220

https://github.com/savoirfairelinux/vulnscout

Addressing vulnerabilities in your products commit
root

If a fix is found (typically upstream), add the
patch to your recipe

Include the CVE identifier in the patch file
name (recommended)
Add a CVE:<id> line to the patch
Also set an Upstream-Status: field.
https://docs.yoctoproject.org/
contributor-guide/
recipe-style-guide.html#
patch-upstream-status

Share your patch with the Yocto
community!

Of course, another option is to upgrade to a
newer version of upstream (if available).

meta/recipes-bsp/grub/files/CVE-2025-0622-01.patch

From 2123c5bca7e21fbeb0263df4597ddd7054700726 Mon Sep 17 00:00:00 2001
From: B Horn <b@horn.uk>
Date: Fri, 1 Nov 2024 19:24:29 +0000
Subject: [PATCH 1/3] commands/pgp: Unregister the "check_signatures" hooks on
module unload

If the hooks are not removed they can be called after the module has
been unloaded leading to an use-after-free.

Fixes: CVE-2025-0622

Reported-by: B Horn <b@horn.uk>
Signed-off-by: B Horn <b@horn.uk>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>

CVE: CVE-2025-0622
Upstream-Status: Backport [https://git.savannah.gnu.org/cgit/grub.git/commit/?id=2123c5bca7e21fbeb...]
Signed-off-by: Peter Marko <peter.marko@siemens.com>

grub-core/commands/pgp.c | 2 ++
1 file changed, 2 insertions(+)

diff --git a/grub-core/commands/pgp.c b/grub-core/commands/pgp.c
index c6766f044..5fadc33c4 100644
--- a/grub-core/commands/pgp.c
+++ b/grub-core/commands/pgp.c
@@ -1010,6 +1010,8 @@ GRUB_MOD_INIT(pgp)

GRUB_MOD_FINI(pgp)
{
+ grub_register_variable_hook ("check_signatures", NULL, NULL);
+ grub_env_unset ("check_signatures");

grub_verifier_unregister (&grub_pubkey_verifier);
grub_unregister_extcmd (cmd);
grub_unregister_extcmd (cmd_trust);

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 195/ 220

https://docs.yoctoproject.org/contributor-guide/recipe-style-guide.html#patch-upstream-status
https://docs.yoctoproject.org/contributor-guide/recipe-style-guide.html#patch-upstream-status
https://docs.yoctoproject.org/contributor-guide/recipe-style-guide.html#patch-upstream-status
https://docs.yoctoproject.org/contributor-guide/recipe-style-guide.html#patch-upstream-status
https://git.yoctoproject.org/poky/tree/meta/recipes-bsp/grub/files/CVE-2025-0622-01.patch

Ignoring vulnerabilities in your products commit
root

You can also modify the recipe to mark some vulnerabilities as irrelevant:

meta/recipes-devtools/rust/rust-source.inc
CVE_STATUS[CVE-2024-24576] = "not-applicable-platform: Issue only applies on Windows"

You can also group vulnerabilities that can be ignored in the same way:

meta/recipes-extended/logrotate/logrotate_3.22.0.bb
CVE_STATUS_GROUPS = "CVE_STATUS_RECIPE"
CVE_STATUS_RECIPE = "CVE-2011-1548 CVE-2011-1549 CVE-2011-1550"
CVE_STATUS_RECIPE[status] = "not-applicable-platform: CVE is debian, gentoo or SUSE specific on the way logrotate was installed/used"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 196/ 220

https://git.yoctoproject.org/poky/tree/meta/recipes-devtools/rust/rust-source.inc
https://git.yoctoproject.org/poky/tree/meta/recipes-extended/logrotate/logrotate_3.22.0.bb

Managing vulnerabilities — Key Takeaways � commit
root

Yocto hides the complexity of managing vulnerability database changes
Add this to conf/local.conf:
INHERIT += "cve-check"

You will get CVE reports when you generate your image
To check single recipe:
$ bitbake -c cve_check linux-yocto

Fix vulnerabilities by adding patches or marking issues as irrelevant

See the Yocto manual:
https://docs.yoctoproject.org/dev-manual/vulnerabilities.html

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 197/ 220

https://docs.yoctoproject.org/dev-manual/vulnerabilities.html

Lab — Managing Vulnerabilities commit
root

Enable vulnerability checks
Fetch a copy of the vulnerability database
Reduce the vulnerability count
Mark a vulnerability as ignored

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 198/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Yocto in Projects
Software Supply Chain — Software Bill of Materials (SBoM)

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 199/ 220

What’s an SBoM? commit
root

A description of the software contents in a product
Components, their versions and sources (hashes)
Patches applied to fix vulnerabilities
Licenses of components
Dependencies between components
Tools used to build the components
Can include the full sources too

Two main open formats:
SPDX (Linux Foundation): https://spdx.dev/

CycloneDX (Open Worldwide Application Security Project):
https://cyclonedx.org/

Image created via ChatGPT
Michael Opdenacker Yocto Project and OpenEmbedded Training Course 200/ 220

https://spdx.dev/
https://cyclonedx.org/

Usefulness of SBoM? commit
root

Vulnerability assessment

Especially for your customers, who don’t
have the build system and could run
checks based on just the versions of the
components and their dependencies.

In particular years after the product was
released

License compliance

SPDX SBoM itself already meets some of the
requirements

Allows to run all sorts of checks without
having the build system.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 201/ 220

Generating SBoM from Yocto commit
root

Yocto now supports
Kirkstone (4.0), Scarthgap (5.0): SPDX 2.2
Styhead, Walnascar (5.1+): SPDX 3.0
CycloneDX not supported

Except in version Kirkstone (4.0), toplevel SPDX
output is generated by default, in
tmp/deploy/images/<machine>/<image>-
<machine>.rootfs.spdx.json

Some individual SPDX files are available in
tmp/deploy/spdx

Add this to conf/local.conf to make the output
human readable:
SPDX_PRETTY = "1"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 202/ 220

Consuming SPDX produced by Yocto commit
root

That’s the fizzy part...
The SPDX standard is recent
”Jungle” of tools in
https://spdx.dev/use/spdx-tools/
Haven’t heard about one tool gaining substantial
adoption yet

That’s why we don’t have a lab on this topic yet

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 203/ 220

https://spdx.dev/use/spdx-tools/

Working with licenses commit
root

Free Software is not public domain, it
also carries obligations, like:

Keeping the copyright notices

Sharing the original and modified
sources (”copyleft” licenses)

GPLv3 software: should allow users
to run modified software on the
device itself (very strong
obligation!)

A few tricks:

LICENSE_FLAGS_ACCEPTED may be necessary to build
components that are not always suitable for all purposes,
like Gstreamer ”Ugly” plugins that may not be used in
some countries because of software patents.
LICENSE_FLAGS_ACCEPTED = "commercial"

INCOMPATIBLE_LICENSE allows to make sure software
with specific licenses (such as GPLv3) is not built:
INCOMPATIBLE_LICENSE = "GPL-3.0* LGPL-3.0* AGPL-3.0*"

See https://docs.yoctoproject.org/dev-manual/licenses.html

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 204/ 220

https://docs.yoctoproject.org/ref-manual/variables.html#term-LICENSE_FLAGS_ACCEPTED
https://docs.yoctoproject.org/ref-manual/variables.html#term-INCOMPATIBLE_LICENSE
https://docs.yoctoproject.org/dev-manual/licenses.html

SBoM and licenses — Key Takeaways � commit
root

Yocto now generates SPDX SBoM
It contains everything you need to run vulnerability checks without the build system
SPDX SBoM also helps with some license compliance requirements
Tools for consuming SPDX are being developed but no ”winner” has emerged yet.

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 205/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Configuration Management

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 206/ 220

Managing Layers commit
root

People are using several tools to manage the various layers and versions in their projects.
Google Repo — Originally created for Android
https://gerrit.googlesource.com/git-repo
Kas — Created by Siemens
Dedicated tool for Yocto
Fetches the right sources, sets configuration options and runs BitBake:
Homepage: https://github.com/siemens/kas
Documentation: https://kas.readthedocs.io/en/latest/

That’s particularly useful to automate tasks, in particular in CI jobs!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 207/ 220

https://gerrit.googlesource.com/git-repo
https://github.com/siemens/kas
https://kas.readthedocs.io/en/latest/

Using Kas (1) commit
root

First install Kas. Example on Ubuntu:
$ sudo apt install kas
Then create a YAML file describing your
project, or use a provided one
target is the recipe you want to build,
typically an image
Then build your project:
$ mkdir build
$ cd $build
$ kas build project.yml

kas/examples/openembedded.yml

header:
version: 19

Optionally provide keys to verify signed repositories
signers:

YoctoBuildandRelease:
fingerprint: 2AFB13F28FBBB0D1B9DAF63087EB3D32FB631AD9
gpg_keyserver: keyserver.ubuntu.com

machine: qemux86-64
distro: poky

target: zlib-native

repos:
poky:

url: https://git.yoctoproject.org/poky.git
when specifying a tag, optionally provide a commit hash
tag: yocto-5.1.1
commit: 7e081bd98fdc5435e850d1df79a5e0f1e30293d0
signed: true
allowed_signers:

- YoctoBuildandRelease
layers:

meta:
meta-poky:

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 208/ 220

https://github.com/siemens/kas/blob/master/examples/openembedded.yml

Using Kas (2) commit
root

You can also include shared files through
the includes section
You can also specify one or multiple
configurations through the
local_conf_header section.

meta-mender-community/kas/beagleplay-ti.yml

header:
version: 14
includes:
- kas/include/mender-full.yml
- kas/include/arm.yml
- kas/include/ti.yml

machine: beagleplay-ti

local_conf_header:
beagleplay: |

MENDER_FEATURES_ENABLE:append = " mender-image-sd"
MENDER_FEATURES_DISABLE:append = "mender-image-uefi"
MENDER_STORAGE_DEVICE = "/dev/mmcblk1"
MENDER_BOOT_PART_SIZE_MB = "128"
MENDER_PARTITION_ALIGNMENT = "1048576"
IMAGE_FSTYPES:remove = "wic wic.bmap mender.bmap sdimg.bmap"

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 209/ 220

https://github.com/mendersoftware/meta-mender-community/blob/scarthgap/kas/beagleplay-ti.yml

Kas override files commit
root

You can add your own settings on top of a standard
YAML file →
And then run a command like:

$ kas build qemux86.yml:my-mender.yml

See quick Kas tutorial from Josef Holzmayr:
https://hub.mender.io/t/
using-kas-to-reproduce-your-yocto-builds/

my-mender.yml

header:
version: 13

local_conf_header:
mender: |

MENDER_SERVER_URL = "https://hosted.mender.io"
MENDER_TENANT_TOKEN = "..."

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 210/ 220

https://hub.mender.io/t/using-kas-to-reproduce-your-yocto-builds/
https://hub.mender.io/t/using-kas-to-reproduce-your-yocto-builds/

Lab — Using Kas commit
root

Turn your local layers into Git repositories
Create a YAML description of your current project
Regenerate it entirely with Kas

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 211/ 220

Yocto Project and OpenEmbedded Training Course commit
root

Yocto References

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 212/ 220

Books commit
root

Difficult to recommend books
Several books are available
But important to pick up a recent one, as many changes
happened in the recent versions
The most recent ones are pretty short and very expensive.
The table of contents don’t seem to go very deep either.

Image credits:
https://openclipart.org/detail/174860/bookworm-penguin

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 213/ 220

https://openclipart.org/detail/174860/bookworm-penguin

Yocto and BitBake Manuals commit
root

Our favorite parts:

Yocto and BitBake Variable Index:
https://docs.yoctoproject.org/genindex.html

Development Tasks Manual:
https://docs.yoctoproject.org/dev-manual/
A gold mine for typical tasks!

Reference Manual — Classes:
https://docs.yoctoproject.org/ref-manual/classes.html

Migration and Release Notes:
https://docs.yoctoproject.org/migration-guides/index.html

Constantly updated by the Yocto Project — Contributions welcome too!

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 214/ 220

https://docs.yoctoproject.org/genindex.html
https://docs.yoctoproject.org/dev-manual/
https://docs.yoctoproject.org/ref-manual/classes.html
https://docs.yoctoproject.org/migration-guides/index.html

Further Online Resources commit
root

Bootlin free Yocto training materials
Also CC-BY-SA licensed. Michael Opdenacker contributed to them
https://bootlin.com/doc/training/yocto/
Yocto Project videos on YouTube:
https://www.youtube.com/@TheYoctoProject
Yocto Project on LinkedIn:
https://www.linkedin.com/company/yocto-project/
Yocto Project on Mastodon:
https://fosstodon.org/@yoctoproject

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 215/ 220

https://bootlin.com/doc/training/yocto/
https://www.youtube.com/@TheYoctoProject
https://www.linkedin.com/company/yocto-project/
https://fosstodon.org/@yoctoproject

Specific Resources commit
root

Viktor Petersson’s podcast: Inside the Yocto Project’s Evolving Tools: SBOMs, SPDX
3.0 and Secure Embedded Systems
Solid introduction to Yocto, and to software supply chain security in particular.
https://vpetersson.com/podcast/S02E09.html

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 216/ 220

https://vpetersson.com/podcast/S02E09.html

Conferences and Events commit
root

All announced on
https://www.yoctoproject.org/community/events/

Yocto Project Summit
Once a year, virtual event, usually in November
OpenEmbedded Workshop
Organized in Brussels in February right after FOSDEM
Other events: dev-days and workshops

Image:
https://www.yoctoproject.org/blog/2023/08/04/yocto-project-at-embedded-open-source-summit-2023/

In Technical Conferences
Embedded Linux Conference
North America (Spring – Summer) and Europe
(Summer – Autumn)
Strong Yocto presence, often a booth too.
https://embeddedlinuxconference.com/

FOSDEM
The biggest FOSS conference
Brussels, February, free and available online
Some Yocto talks and attended by many developers
https://fosdem.org

Embedded World
Big trade show in March in Nuremberg, Germany
A very well attended booth
https://www.embedded-world.de/

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 217/ 220

https://www.yoctoproject.org/community/events/
https://www.yoctoproject.org/blog/2023/08/04/yocto-project-at-embedded-open-source-summit-2023/
https://embeddedlinuxconference.com/
https://fosdem.org
https://www.embedded-world.de/

Get Involved commit
root

The best way to hone your skills!
Yocto and OpenEmbedded are a very welcoming
community
Check out our contributor guide:
https://docs.yoctoproject.org/
contributor-guide/
Subscribe to our mailing lists:
https://www.yoctoproject.org/community/
mailing-lists/
Join our weekly virtual meetings:
https://www.yoctoproject.org/community/
get-involved/#virtual-meetings

Image: https://www.flickr.com/photos/linuxfoundation/53053474040/sizes/h/

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 218/ 220

https://docs.yoctoproject.org/contributor-guide/
https://docs.yoctoproject.org/contributor-guide/
https://www.yoctoproject.org/community/mailing-lists/
https://www.yoctoproject.org/community/mailing-lists/
https://www.yoctoproject.org/community/get-involved/#virtual-meetings
https://www.yoctoproject.org/community/get-involved/#virtual-meetings
https://www.flickr.com/photos/linuxfoundation/53053474040/sizes/h/

Stay in Touch commit
root

Thank you for participating to this course

As a participant to our course, you have unlimited access
to our Matrix chatroom.

Don’t hesitate to ask questions from real life
projects

You may also be interested in other courses from Root
Commit:

Embedded Linux
Linux Kernel, Board Support and Driver
Development
Embedded Linux Boot Time Reduction

https://rootcommit.com/training/

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 219/ 220

https://rootcommit.com/training/

Lab — Final Challenge: Media Player commit
root

Fix all errors in a meta-broken layer
See basic graphics in action: splashscreen, videoplayer
Get codes to claim your completion certificate

Michael Opdenacker Yocto Project and OpenEmbedded Training Course 220/ 220

	Introduction
	First demo
	Learning Techniques
	Embedded Linux
	Learning from BitBake output

	Getting Started
	Basic Variable Syntax and Operations
	Adding Packages to an Image
	Documentation

	Recipes
	BitBake Recipes — Part 1
	BitBake Recipes — Part 2
	Modifying Recipes
	Virtual Packages
	Kernel Recipes
	devtool
	BitBake Overrides
	Task Details
	Debugging Recipes

	Layers
	BSP Layers
	Images
	Image Recipes
	Package Groups
	Making Disk Images
	Distro Layers
	BSP vs Distro vs Image

	Yocto in Projects
	Binary Distributions
	Addressing Vulnerabilities
	Software Supply Chain — Software Bill of Materials (SBoM)

	Configuration Management
	Yocto References

